
1

Unit- III (Functional dependencies and Normalization, Relational Data
Model and Relational Algebra)

Important questions

Section A :(2 Marks)

1.What is Functional Dependency?

Functional dependency (FD) is set of constraints between two attributes in a relation. Functional
dependency says that if two tuples have same values for attributes A1, A2,..., An then those two
tuples must have same values for attributes B1, B2, ..., Bn. Functional dependency is represented
by arrow sign (→), that is X→Y, where X functionally determines Y. The left hand side attributes
determines the values of attributes at right hand side.

2.What are the applications of Relational Algebra?

The main application of relational algebra is providing a theoretical foundation for relational
databases, particularly query languages for such databases.

3.Define Normalization. What is the use of Normalization?

Normalization is the process of organizing the attributes and tables of a relational database to
minimize data redundancy.
Normalization is the process of reorganizing data in a database so that it meets two basic
requirements:
a) There is no redundancy of data (all data is stored in only one place).
b) Data dependencies are logical (all related data items are stored together).

4. What are the types of Normalization?

First normal form
Second normal form
Third normal form
Boyce-Code Normal form

Section-B: (5 Marks and 10 Marks)

1.Explain Functional Dependency in Detail.

Functional dependency (FD) is set of constraints between two attributes in a relation. Functional

dependency says that if two tuples have same values for attributes A1, A2,..., An then those two

tuples must have to have same values for attributes B1, B2, ..., Bn. Functional dependency is

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Query_language

2

represented by arrow sign (→), that is X→Y, where X functionally determines Y. The left hand

side attributes determines the values of attributes at right hand side.
Armstrong’s Axioms
William W. Armstrong established a set of rules which can be used to Inference the functional
dependencies in a relational database:
Reflexivity rule: AB is true, if B is subset of A. Augmentation rule: If AB is true, then
ACBC is also true. Transitivity rule: If AB and BC, then A C is implied.

2.Explain various types of Normal forms with examples.

FIRST NORMAL FORM (1NF)
First normal form: A table is in the first normal form if it contains no repeating columns.

Consider the below table, in this example it shows several employees working on several projects.
In this company the same employee can work on different projects and at a different hourly rate.
Convert this table into 1NF.

STEPS:

Transform a table of unnormalised data into first normal form (1NF). The process is as follows:

Identify repeating attributes.
Remove these repeating attributes to a new table togetherwith a copy of the key from the UNF
table. After removing the duplicate data the repeating attributes are easily identified.
In the previous table the Employee No, Employee Name, Department No, Department Name and
Hourly Rate attributes are repeating. These are the repeating attributes and have been to a new table
together with a copy of the original key (ie:Project Code).

3

A key of Project Code and Employee No has been defined for this new table. This combination is
unique for each row in the table.

SECOND NORMAL FORM (2NF)
Second normal form: A table is in the second normal form if it is in the first normal form and
contains only columns that are dependent on the whole (primary) key.
STEPS:
Transform 1NF data into second normal form (2NF). Remove any -key attributes (partial
Dependencies) that only depend on part of the table key to a new table. Ignore tables with a simple
key or with no non- key attributes.

The first table went straight to 2NF as it has a simple
key (Project Code).
Employee name, Department No and Department Name are dependent upon Employee No only.
Therefore, they were moved to a new table with Employee No being the key.

However, Hourly Rate is dependent upon both Project Code and Employee No as an employee may
have a different hourly rate depending upon which project they are working on. Therefore it
remained in the original table.

4

THIRD NORMAL FORM (3NF)
Third normal form: A table is in the third normal form if it is in the second normal form and all the
non-key columns are dependent only on the primary key. If the value of a non-key column is
dependent on the value of another non-key column we have a situation known as transitive
dependency. This can be resolved by removing the columns dependent on non-key items to another
table.

STEPS:

Data in second normal form (2NF) into third normal form (3NF). Remove to a new table any non-
key attributes that are more dependent on other non-key attributes than the table key.

The project team table went straight from 2NF to 3NF as itonly has one non-key attribute.
Department Name is more dependent upon Department No than Employee No and therefore was
moved to a new table. Department No is the key in this new table and a foreign key in the
Employee table.

5

Boyce-Codd Normal Form(BCNF)

A table is in Boyce-Codd normal form (BCNF) if and only if it is in 3NF and every determinant is a
candidate key.Anomalies can occur in relations in 3NF if there is a composite key in which part of
that key has a determinant which is not itself a candidate key.

This can be expressed as R(A,B,C), C--->A where:

oThe relation R contains attributes A, B and C

oA and B form a candidate key.

oC is the determinant for A (A is functionally dependent on C).

oC is not part of any key.

Anomalies can also occur where a relation contains several candidate keys where:

oThe keys contain more than one attribute (they are composite keys).

oAn attribute is common to more than one key. Example to understand BCNF:-

6

Consider the following non-BCNF table:

The candidate key of the table are: {Person, Shop Type}

{Person, Nearest Shop}
The table does not adhere to BCNF because of the dependency

Nearest Shop Shop Type, in which the determining attribute (Nearest shop) is neither a candidate
key nor a superset of a candidate key.

After Normalization.

Candidate keys are {Person, Shop} and {Shop}, respectively.

3.Explain various types of operations in Relational Algebra.

Relational Algebra

 Basic operations:

 Projection (π) Selects a subset of columns from relation.

 Selection (σ) Selects a subset of rows from relation.

7

 Cross-product (×) Allows us to combine two relations.

 Set-difference (-) Tuples in reln. 1, but not in reln. 2.

 Union (U) Tuples in reln. 1 and in reln. 2.

 Rename(ρ) Use new name for the Tables or fields.

 Additional operations:

 Intersection (∩), join().

PROJECT (π)

The PROJECT operation is used to select a subset of the attributes of a relation by specifying the
names of the required attributes

Consider the Student_table:

A) For example, to get a name from Student_Table. πName(Student_Table)

SELECT(σ)

The SELECT operation is used to choose a subset of the tuples from a relation that satisfies a
selection condition. the SELECT operation can be consider to be a filter that keeps only those tuples
that satisfy a qualifying condition.

A) For example, to list the regno> 102 from Student_Table. σRegno>102(Student_table)

8

B) For example, to list all the Students belong to BCA course. σCourse=”BCA”(Student_table)

UNION Operator

List of customers who are either borrower or depositor at bank πCust-name (Borrower) U πCust-
name (Depositor)

INTERSECTION Operator

Customers who are both borrowers and depositors πCust-name (Borrower) ∩ πCust-name
(Depositor)

9

Set Difference

Customers who are borrowers but not depositors πCust-name (Borrower) - πCust-name (Depositor)

Cartesian-Product or Cross-Product (S1 × R1)
Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1, with fieldnames

`inherited’ if possible.

 Consider the borrower and loan tables as follows:

JOIN

Join is combination of Cartesian product followed by selection process. Join operation pairs two
tuples from different relations if and only if the given join condition is satisfied.
Following section describe briefly about join types:

10

Natural Join (⋈)

Natural Join can only be performed if there is at least one common attribute exists between relation.
Those attributes must have same name and domain.
Natural join acts on those matching attributes where the values of attributes in both relation is same.

Theta (θ) join

Theta joins combines tuples from different relations provided they satisfy the theta condition.

Notation: R1 ⋈θ R2

R1 and R2 are relations with their attributes (A1, A2, .., An) and (B1, B2,.. ,Bn) such that no
attribute matches that is R1 ∩ R2 = Φ Here θ is condition in form of set of conditions C.

Theta join can use all kinds of comparison operators(=,<,>,≤,≥,= ̸).

Student_Detail = STUDENT ⋈Student.Std = Subject.Class SUBJECT

Equi-Join

When Theta join uses only equality comparison operator it is said to be Equi-Join. The above
example corresponds to equi-join.

11

4.Explain relational model constraints in detail.

Integrity Constraints over Relations

An integrity constraint (IC) is a condition that is specified on a database schema, and restricts the
data that can be stored in an instance of the database.

Integrity constraints are specified and enforced at different times:

1. When the DBA or end user defines a database schema, he or she specifies the ICs that must
hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and disallows changes
to the data that violate the specified ICs.

12

Key Constraints

It is a set of one or more columns whose combined values are unique among all occurrences in a
given table. A key is the relational means of specifying uniqueness. Some different types of keys
are:

Primary key is an attribute or a set of attributes of a relation which posses the properties of
uniqueness and irreducibility (No subset should be unique). For example: Register Number in
Student table is primary key, Passenger Number in passenger table is primary key, Passport
number in Booking table is a primary key and the combination of passenger number and Passport
Number in Reservation table is a primary key ie composite primary key.

Foreign key is the attributes of a table, which refers to the primary key of some another table.
Foreign key permit only those values, which appears in the primary key of the table to which it
refers or may be null (Unknown value).

For example: Register number of Result table refers to the Register number of Student table,
which is the primary key of Student table, so we can say that Register number of Result table is
the foreign key.

