
SOFTWARE ENGINEERING : CHAPTER 1

 SDLC Models
• Waterfall Model
• Spiral Model
• Iterative Model
• Professional And Ethical Responsibility
• 8 PRINCIPLE Professional And Ethical.
• Software Engineering Challenges

SOFTWARE ENGINEERING PROCESS MODEL
1ST MODEL: WATERFALL MODEL

the requirement btw the user and developer

data and architectural design to meet the requirement

programming language suitable for the
project

using different software
testing methods and tools

each phase

Requirement analysis

Design

Coding

Testing

Maintenance

When to use the waterfall model

• The project is small
• Technology is understood.
• Product definition is stable.
• Requirements are very well known, clear and fixed.

Advantages Disadvantage
Easy to understand and implement Its linear fashion, software process

flow stepwise from one phase to another.

Its widely used and known Development of new system its not suitable
(in theory) Bcoz it takes lot of effort and time.

It allows for communication btw It Requires the user to define system
customer n developer, to specify requirements early in the project.
What will be delivered and what cost

SPIRAL MODEL

• The spiral model was proposed by Boehm, so its called Boehm spiral model.

• This model copies the iterative nature of prototyping with controlled and
systematic aspects of waterfall model.

• It has 2 distinguishing features:

1. One is cyclic approach for increment process system’s. Degree of
implementation while decreasing the degree of risk.

2. Other is a set of anchor point milestone for ensuring satisfactory system
solution.

• Important Phases of Spiral Model are:

Phase 1 : Objective settings (s/w targets, restrictions, risk,plan alternation)
Phase 2 : Risk analysis (identify and consider how to reduce the risk)
Phase 3 : Development (develop s/w process model and test the s/w)
Phase 4 : Planning (connecting the phases to the next phase of the project)

When to use spiral model

• When costs and risk evaluation is important.
• For medium to high-risk projects
• Long term project commitment
• Users are unsure of their needs
• Requirements are complex

Advantage Disadvantage
s/w developers actively look for cost is high and risk analysis requires
possible risks and analyse it. Highly specific expertise.

This model uses prototyping as risk doesn’t work well for small projects
Reduction mechanism and nt suitable for low risk projects.

It maintains systematic stepwise approach skills required, reviewing project time
to time , need expertise.

It reduce risks before they become
Problematic difficult to convince the customer

ITERATIVE ENHANCEMENT MODEL
• This model helps to remove the short comings of waterfall model.
• The process is done in an iterative (step by step) fashion.
• Every iteration consists of phases of waterfall model.

• In the first iteration, a less capable product are developed and
delivered for use.

• Next iteration, with incremental features is developed.

Iteration 1 Iteration 2 Iteration 3

Waterfall model basic
Product 1

Waterfall model
Enhanced changes

Product 2

Waterfall model
Enhanced changes

Product 3

Advantage Disadvantage

Useful when more manpower Iteration may never end, user have
Is available for development to wait for final product.

Useful when the release cost estimation is so high
deadlines are tight

Professional and Ethical Responsibility
• Software Engineering activities has to be carried out within legal and

ethical frame work.

PROFESSIONAL RESPONSIBILITIES INCLUDE:
1. Confidentiality
2. Competence
3. Intellectual property rights
4. Computer misuse

8 Principles of software Engineering ethics and
professional practice

1. Principle of public
2. Principle of client and employer
3. Principle of product
4. “ “ “ management
5. “ “ “ judgement
6. “ “ “ profession
7. “ “ “ colleagues
8. “ “ “ self

Software Engineering Challenges

1. Legacy Challenges huge s/w sys used today were developed many yrs ago,
challenge is to maintaining and updating the s/w.

2. Heterogeneity Challenges distributed sys across n/w. challenges of
developing techniques to build different kinds of support sys.

3. Delivery Challenges s/w project are time consuming to be manufactured
and maintain quality, so Challenges is on time to deliver the project

4. Trust Challenges Maintaining the trust.

Other Challenges are: -
Changing Requirements adapting for hardware changes
Changing Optimism Estimate how long it take to develop and future

• What is software engineering ? 2m
• Define system? 2m
• Differentiate system software and application software? 3m
• Explain the characteristic of software? 5m
• Explain the different phases of SDLC? 5m
• Name different types of SDLC models? 2m
• Differentiate generic product and customized product? 3m
• Explain the different phases of spiral model with advantage and disadvantage? 8m
• Explain about Risk Management ? 6m
• Explain the challenges of software engineers? 5m
• What are the professional and ethical responsibilities of Software engineering? 5m
• Explain the different phases of Waterfall model with advantage and disadvantage? 8m
• Compare waterfall model and spiral model? 5m

SOFTWARE ENGINEERING : CHAPTER 2
 SYSTEM ENGINEERING
• System, System Engineering
• Emergent Properties With Examples
• System Procurement
• Contractors And Sub-contractors
• The System Design Processing
• Functional System Components

What is a system?
• A system is the collection of inter-related components

working together towards some common objective.
• A system may include software, mechanical, electrical

and electronic hardware and be operated by people.
• System components are dependent on other

system components ie subsystem

Eg : car system

Engine Gear light sound central locking

Systems Engineering
• Is the activity which provides the

framework within which complex
system can be defined, analysed,
specified, manufactured, operated and
support.

The system may include:
Software
Hardware
people

Emergent properties

• Properties of the system as a whole rather than properties that can
be derived from the properties of components of a system

• Emergent properties are a consequence of the relationships between
system components

• They can therefore only be assessed and measured once the
components have been integrated into a system

Examples of emergent properties

• The overall weight of the system
• This is an example of an emergent property that can be computed from

individual component properties.

• The reliability of the system
• This depends on the reliability of system components and the relationships

between the components.

• The usability of a system
• This is a complex property which is not simply dependent on the system

hardware and software but also depends on the system operators and the
environment where it is used.

Systems and their environment

• Systems are not independent but exist in an environment
• System’s function may be to change its environment
• Environment affects the functioning of the system e.g. system may

require electrical supply from its environment
• The organizational as well as the physical environment may be

important

System hierarchies

Security
system

Heating
system

Lighting
system

Power
system

Waste
system

Water
system

Town

Street

Building

System procurement

• Acquiring a system for an organization to meet some need
• Some system specification and architectural design is usually

necessary before procurement
• You need a specification to let a contract for system development
• The specification may allow you to buy a commercial off-the-shelf (COTS)

system. Almost always cheaper than developing a system from scratch

Contractors and sub-contractors

• The procurement of large hardware/software systems is usually based
around some principal contractor

• Sub-contracts are issued to other suppliers to supply parts of the
system

• Customer does not deal directly with sub-contractors

Contractor/Sub-contractor model

Sub-contractor 2Sub-contractor 1 Sub-contractor 3

Principal
contractor

System
customer

System requirements definition

• Three types of requirement defined at this stage
• Abstract functional requirements. System functions are defined in an abstract

way
• System properties. Non-functional requirements for the system in general are

defined
• Undesirable characteristics. Unacceptable system behaviour is specified

• Should also define overall organisational objectives for the system

The system design process

• Partition requirements
• Organise requirements into related groups

• Identify sub-systems
• Identify a set of sub-systems which collectively can meet the system

requirements
• Assign requirements to sub-systems

• Causes particular problems when COTS are integrated
• Specify sub-system functionality
• Define sub-system interfaces

• Critical activity for parallel sub-system development

The system design process

Partition
requirements

Identify
sub-systems

Assign requirements
to sub-systems

Specify sub-system
functionality

Define sub-system
interfaces

Sub-system development

• Typically parallel projects developing the
hardware, software and communications

• May involve some COTS (Commercial Off-the-Shelf) systems
procurement

• Lack of communication across implementation
teams

• slow mechanism for proposing system changes means that the
development schedule may be extended because of the need for
rework

System integration

• The process of putting hardware, software and
people together to make a system

• Should be incremental integration so that sub-systems are integrated
one at a time

• Interface problems between sub-systems are usually found at this
stage

• May be problems with uncoordinated deliveries
of system components

System installation

• Environmental assumptions may be incorrect
• May be human resistance to the introduction of

a new system
• System may have to coexist with alternative

systems for some time
• May be physical installation problems (e.g.

cabling problems)
• Operator training has to be identified

System evolution

• Large systems have a long lifetime. They must evolve to meet
changing requirements

• Evolution is very costly for a number of reasons:
• Changes must be analysed from a technical and business perspective
• Sub-systems interact so unanticipated problems can arise
• There is rarely a rational for original design decisions
• System structure is corrupted as changes are made to it

• Existing systems which must be maintained are sometimes called
legacy systems

System decommissioning

• Taking the system out of service after its useful lifetime
• May require removal of materials (e.g. dangerous chemicals) which

pollute the environment
• Should be planned for in the system design by encapsulation

• May require data to be restructured and converted to be used in
some other system

• Hardware system may involves de-assembling and recycling materials.

System architecture modelling

• An architectural model presents an abstract view of the sub-systems making up a
system

• May include major information flows between sub-systems
• Usually presented as a block diagram
• May identify different types of functional component in the model

Functional system components

• Sensor components
• Actuator components
• Computation components
• Communication components
• Co-ordination components
• Interface components

System components

• Sensor components
• Collect information from the system’s environment e.g. radars in an air traffic control system

• Actuator components
• Cause some change in the system’s environment e.g. valves in a process control system which

increase or decrease material flow in a pipe

• Computation components
• Carry out some computations on an input to produce an output e.g. a floating point processor

in a computer system

System components

• Communication components
• Allow system components to communicate with each other e.g. network linking distributed

computers

• Co-ordination components
• Co-ordinate the interactions of other system components e.g. scheduler in a real-time system

• Interface components
• Facilitate the interactions of other system components e.g. operator interface

• All components are now usually software controlled

System reliability engineering

• Because of component inter-dependencies,
faults can be propagated through the system

• System failures often occur because of
unforeseen inter-relationships between
components

• It is probably impossible to anticipate all
possible component relationships

• Software reliability measures may give a false
picture of the system reliability

Influences on reliability

• Hardware reliability
• What is the probability of a hardware component failing and how long does it take to repair that

component?

• Software reliability
• How likely is it that a software component will produce an incorrect output. Software failure is

usually distinct from hardware failure in that software does not wear out.

• Operator reliability
• How likely is it that the operator of a system will make an error?

	Slide Number 1
	SOFTWARE ENGINEERING PROCESS MODEL
	When to use the waterfall model
	Advantages Disadvantage
	SPIRAL MODEL
	Slide Number 6
	Slide Number 7
	When to use spiral model
	Advantage Disadvantage
	ITERATIVE ENHANCEMENT MODEL
	Slide Number 11
	Advantage Disadvantage
	Professional and Ethical Responsibility
	8 Principles of software Engineering ethics and professional practice
	Software Engineering Challenges
	Slide Number 16
	Slide Number 17
	What is a system?
	Systems Engineering
	Emergent properties
	Examples of emergent properties
	Systems and their environment
	System hierarchies
	System procurement
	Contractors and sub-contractors
	Contractor/Sub-contractor model
	Slide Number 27
	System requirements definition
	The system design process
	The system design process
	Sub-system development
	System integration
	System installation
	System evolution
	System decommissioning
	System architecture modelling
	Functional system components
	System components
	System components
	System reliability engineering
	Influences on reliability

