
1

 Problem Solving Techniques Using C

 UNIT – I

2

1.0 Introduction A computer is a very powerful and versatile machine capable of
performing a multitude of different tasks, yet it has no intelligence or thinking
power. The intelligence Quotient (I.Q) of a computer is zero. A computer
performs many tasks exactly in the same manner as it is told to do. This places
responsibility on the user to instruct the computer in a correct and precise
manner, so that the machine is able to perform the required job in a proper way.
A wrong or ambiguous instruction may sometimes prove disastrous. In order to instruct a computer correctly, the user must have clear
understanding of the problem to be solved. A part from this he should be able
to develop a method, in the form of series of sequential steps, to solve it. Once
the problem is well-defined and a method of solving it is developed, then
instructing he computer to solve the problem becomes relatively easier task. Thus, before attempt to write a computer program to solve a given
problem. It is necessary to formulate or define the problem in a precise
manner. Once the problem is defined, the steps required to solve it, must
be stated clearly in the required order. 1.1 Procedure (Steps Involved in Problem Solving) A computer cannot solve a problem on its own. One has to provide
step by step solutions of the problem to the computer. In fact, the task of
problem solving is not that of the computer. It is the programmer who
has to write down the solution to the problem in terms of simple
operations which the computer can understand and execute. In order to solve a problem by the computer, one has to pass though
certain stages or steps. They are 1. Understanding the problem 2. Analyzing the problem 3. Developing the solution 4. Coding and implementation. 1. Understanding the problem: Here we try to understand the
problemto be solved in totally. Before with the next stage or step, we
should be absolutely sure about the objectives of the given problem. 2. Analyzing the problem: After understanding thoroughly the
problemto be solved, we look different ways of solving the problem and
evaluate each

3

of these methods. The idea here is to search an appropriate solution to the problem
under consideration. The end result of this stage is a broad overview of the
sequence of operations that are to be carries out to solve the given problem. 3. Developing the solution: Here the overview of the sequence
ofoperations that was the result of analysis stage is expanded to form a
detailed step by step solution to the problem under consideration. 4. Coding and implementation: The last stage of the problem solving isthe
conversion of the detailed sequence of operations in to a language that the
computer can understand. Here each step is converted to its equivalent instruction
or instructions in the computer language that has been chosen for the implantation.
1.2 Algorithm Definition A set of sequential steps usually written in Ordinary Language to
solve a given problem is called Algorithm. It may be possible to solve to problem in more than one ways, resulting in
more than one algorithm. The choice of various algorithms depends on the
factors like reliability, accuracy and easy to modify. The most important factor
in the choice of algorithm is the time requirement to execute it, after writing
code in High-level language with the help of a computer. The algorithm which
will need the least time when executed is considered the best. Steps involved in algorithm development An algorithm can be defined as “a complete, unambiguous, finite
numberof logical steps for solving a specific problem “ Step1. Identification of input: For an algorithm, there are
quantities tobe supplied called input and these are fed externally. The
input is to be indentified first for any specified problem. Step2: Identification of output: From an algorithm, at least one
quantityis produced, called for any specified problem. Step3 : Identification the processing operations : All the
calculationsto be performed in order to lead to output from the input are
to be identified in an orderly manner. Step4 : Processing Definiteness : The instructions composing
thealgorithm must be clear and there should not be any ambiguity in
them.

4

 Step5 : Processing Finiteness : If we go through the algorithm, then
forall cases, the algorithm should terminate after a finite number of steps. Step6 : Possessing Effectiveness : The instructions in the
algorithmmust be sufficiently basic and in practice they can be carries
out easily. Example 1. Suppose we want to find the average of three numbers, the
algorithm is as follows Step 1 Read the numbers a, b, c Step 2 Compute the sum of a, b and c Step 3 Divide the sum by 3 Step 4 Store the result in variable d Step 5 Print the value of d Step 6 End of the program 1.2.2 Algorithms for Simple Problem Write an algorithm for the following 1. Write an algorithm to calculate the simple interest using the

formula. Simple interest = P*N* R/100.
Where P is principle Amount, N is the number of years and R is
the rate of interest. Step 1: Read the three input quantities’ P, N and R. Step 2 : Calculate simple interest as Simple interest = P* N* R/100 Step 3: Print simple interest. Step 4: Stop.

 FLOW CHART
 A flow chart is a step by step diagrammatic representation of the

logic paths to solve a given problem. Or A flowchart is visual or
graphical representation of an algorithm. The flowcharts are pictorial representation of the methods to b used
to solve a given problem and help a great deal to analyze the problem and

5

plan its solution in a systematic and orderly manner. A flowchart when
translated in to a proper computer language, results in a complete program.

Advantages of Flowcharts 1. The flowchart shows the logic of a problem displayed in pictorial
fashion which felicitates easier checking of an algorithm. 2. The Flowchart is good means of communication to other users. It is
also a compact means of recording an algorithm solution to a problem. 3. The flowchart allows the problem solver to break the problem
into parts. These parts can be connected to make master chart. 4. The flowchart is a permanent record of the solution which can be
consulted at a later time. 1.4 Symbols used in Flow-Charts The symbols that we make use while drawing flowcharts as given below
are as per conventions followed by International Standard Organization (ISO). a. Oval: Rectangle with rounded sides is used to indicate either
START/STOP of the program.

b. Input and output indicators: Parallelograms are used to

represent input and output operations. Statements like INPUT, READ
and PRINT are represented in these Parallelograms.

 c. Process Indicators: - Rectangle is used to indicate any set of
processing operation such as for storing arithmetic operations.

d. Decision Makers: The diamond is used for indicating the step of

decision making and therefore known as decision box. Decision boxes are used
to test the conditions or ask questions and depending upon the answers, the
appropriate actions are taken by the computer. The decision box symbol is

e. Flow Lines: Flow lines indicate the direction being followed in
theflowchart. In a Flowchart, every line must have an arrow on it to
indicate the direction. The arrows may be in any direction

6

f. On- Page connectors: Circles are used to join the different parts of
aflowchart and these circles are called on-page connectors. The uses of these
connectors give a neat shape to the flowcharts. Ina complicated problems, a
flowchart may run in to several pages. The parts of the flowchart on different pages are to be joined with each other. The parts to be joined are
indicated by the circle.

g. Off-page connectors: This connector represents a break in the path of flowchart which is too large to fit on a single page. It is similar to on-

page connector. The connector symbol marks where the algorithm ends
on the first page and where it continues on the second.

1.4.1 Simple Problems using Flow Chart

1. Draw a flowchart to find out the biggest of the three unequal positive

numbers.

7

 2.0 Introduction ‘C’ is high level language and is the upgraded version of another

language (Basic Combined Program Language). C language was
designed at Bell laboratories in the early 1970’s by Dennis Ritchie. C
being popular in the modern computer world can be used in
Mathematical Scientific, Engineering and Commercial applications The most popular Operating system UNIX is written in C language.
This language also has the features of low level languages and hence
called as “System Programming Language” Features of C language • Simple, versatile, general purpose language • It has rich set of Operators • Program execution are fast and efficient • Can easily manipulates with bits, bytes and addresses • Varieties of data types are available • Separate compilation of functions is possible and such functions
can be called by any C program • Block- structured language • Can be applied in System programming areas like operating systems,
compilers & Interpreters, Assembles, Text Editors, Print Spoolers, Network
Drivers, Modern Programs, Data Bases, Language Interpreters, Utilities etc.

2.1 Character Set The character set is the fundamental raw-material for any language.
Like natural languages, computer languages will also have well defined
character-set, which is useful to build the programs. The C language consists of two character sets namely – source
character set execution character set. Source character set is useful to
construct the statements in the source program. Execution character set
is employed at the time of execution of h program. 1. Source character set :This type of character set includes three
typesof characters namely alphabets, Decimals and special symbols.

8

i. Alphabets : A to Z, a to z and Underscore(_) ii. Decimal digits : 0 to 9 iii. Special symbols: + - * / ^ % = & ! () { } [] “ etc 2. Execution character set :This set of characters are also called
asnon-graphic characters because these are invisible and cannot be
printed or displayed directly. These characters will have effect only when the program being executed. These characters are represented by a back slash (\) followed by a character.
Execution character Meaning Result at the time of execution

\ n End of a line Transfers the active position of cursor
 to the initial position of next line

\ 0 (zero) End of string Null
\ t Horizontal Tab Transfers the active position of cursor

 to the next Horizontal Tab
\ v Vertical Tab Transfers the active position of cursor

 to the next Vertical Tab
\ f Form feed Transfers the active position of cursor

 to the next logical page
\ r Carriage return Transfers the active position of cursor

 to the initial position of current line

 2.2 Structure of a ‘C’ Program The Complete structure of C program is The basic components of a C program are: • main() • pair of braces { } • declarations and statements • user defined functions Preprocessor Statements:These statements begin with # symbol.

Theyare called preprocessor directives. These statements direct the C
preprocessor to include header files and also symbolic constants in to C
program. Some of the preprocessor statements are #include<stdio.h>: for the standard input/output functions #include<test.h>: for file inclusion of header file Test.

9

#define NULL 0: for defining symbolic constant NULL = 0 etc. Global Declarations:Variables or functions whose existence is
known inthe main() function and other user defined functions are called
global variables (or functions) and their declarations is called global
declaration. This declaration should be made before main(). main(): As the name itself indicates it is the main function of every C
program.Execution of C program starts from main (). No C program is executed
without main() function. It should be written in lowercase letters and should not be
terminated by a semicolon. It calls other Library functions user defined functions.
There must be one and only one main() function in every C program. Braces:Every C program uses a pair of curly braces ({,}0. The leftbrace
indicates beginning of main() function. On the other hand, the right brace
indicates end of the main() function. The braces can also be used to indicate
the beginning and end of user-defined functions and compound statements. Declarations:It is part of C program where all the variables,
arrays,functions etc., used in the C program are declared and may be
initialized with their basic data types. Statements:These are instructions to the specific operations. They
maybe input-output statements, arithmetic statements, control statements
and other statements. They are also including comments. User-defined functions:These are subprograms. Generally, a
subprogramis a function, and they contain a set of statements to perform a
specific task. These are written by the user; hence the name is user-defined
functions. They may be written before or after the main() function.

 2.3 Data Types in ‘C’

C Data types
Built - In Derived C Data Types Void

 Array Structure Union Pointer

Char Integer Float Double Type def Enum

10

The built-in data types and their extensions is the subject of this
chapter. Derived data types such as arrays, structures, union and pointers
and user defined data types such as typedef and enum.
Basic Data Types There are four basic data types in C language. They are Integer
data, character data, floating point data and double data types. a. Character data: Any character of the ASCII character set can
beconsidered as a character data types and its maximum size can be 1 byte or 8
byte long. ‘Char’ is the keyword used to represent character data type in C. Char - a single byte size, capable of holding one character. b. Integer data: The keyword ‘int’ stands for the integer data type
in Cand its size is either 16 or 32 bits. The integer data type can again be
classified as 1. Long int - long integer with more digits 2. Short int - short integer with fewer digits. 3. Unsigned int - Unsigned integer

 4. Unsigned short int – Unsigned short integer 5. Unsigned long int – Unsigned long integer As above, the qualifiers like short, long, signed or unsigned can be
applied to basic data types to derive new data types. int - an Integer with the natural size of the host machine. c. Floating point data: - The numbers which are stored in floating
pointrepresentation with mantissa and exponent are called floating point
(real) numbers. These numbers can be declared as ‘float’ in C. float – Single – precision floating point number value. d. Double data : - Double is a keyword in C to represent double
precisionfloating point numbers. double - Double – precision floating point number value. Data Kinds in C Various data kinds that can be included in any C program can fall in
to the following. a. Constants/Literals b. Reserve Words Keywords c. Delimeters

11

d. Variables/Identifiers a. Constans/Literals: Constants are those, which do not change,
duringthe execution of the program. Constants may be categorized in to: • Numeric Constants • Character Constants • String Constants 1. Numeric Constants Numeric constants, as the name itself indicates, are those which
consist of numerals, an optional sign and an optional period. They are
further divided into two types: (a) Integer Constants (b) Real
Constants

a. Integer Constants
A whole number is an integer constant Integer constants do not

have a decimal point. These are further divided into three types
depending on the number systems they belong to. They are: i. Decimal integer constants ii. Octal integer constants iii. Hexadecimal integer constants i. A decimal integer constant is characterized by the following
properties • It is a sequence of one or more digits ([0…9], the symbols of

decimal number system). • It may have an optional + or – sign. In the absence of sign, the
constant is assumed to be positive. • Commas and blank spaces are not permitted. • It should not have a period as part of it. Some examples of valid decimal integer constants: 456 -123 Some examples of invalid decimal integer constants: 4.56 - Decimal point is not permissible 1,23 - Commas are not permitted

12

ii. An octal integer constant is characterized by the following
properties • It is a sequence of one or more digits ([0…7], symbols of octal

number system). • It may have an optional + or – sign. In the absence of sign, the
constant is assumed to be positive. • It should start with the digit 0. • Commas and blank spaces are not permitted. • It should not have a period as part of it. Some examples of valid octal integer constants:

 0456 -0123 +0123 Some examples of invalid octal integer constants: 04.56 - Decimal point is not permissible 04,56 - Commas are not permitted x34 - x is not permissible symbol 568 - 8 is not a permissible symbol iii. An hexadecimal integer constant is characterized by the

following properties • It is a sequence of one or more symbols ([0…9][A….Z], the
symbols of Hexadecimal number system). • It may have an optional + or - sign. In the absence of sign, the
constant is assumed to be positive. • It should start with the symbols 0X or 0x. • Commas and blank spaces are not permitted. • It should not have a period as part of it. Some examples of valid hexadecimal integer constants: 0x456 -0x123 0x56A

13

 Some examples of invalid hexadecimal integer constants: 0x4.56 - Decimal point is not permissible 0x4,56 - Commas are not permitted. b. Real Constants The real constants also known as floating point constants are
written in two forms: i. Fractional Form The real constants in Fractional form are characterized by the
following characteristics: • Must have at least one digit. • Must have a decimal point. • May be positive or negative and in the absence of sign taken as positive. • Must not contain blanks or commas in between digits. • May be represented in exponential form, if the value is too

higher or too low. Some examples of valid real constants: 456.78 -123.56 Some examples of invalid real constants: 4.56 - Blank spaces are not permitted 4,56 - Commas are not permitted 456 - Decimal point missing ii. Exponential Form The exponential form offers a convenient way for writing very large and small real constant. For example, 56000000.00, which can be written as 0.56 *,
108 is written as 0.56E8 or 0.56e8 in exponential form. 0.000000234, which
can be written as 0.234 * 10-6 is written as 0.234E-6 or 0.234e-6 in exponential form. The letter E or e stand for exponential form. A real constant expressed in exponential form has two parts: (i)
Mantissa part, (ii) Exponent part. Mantissa is the part of the real constant to
the left of E or e, and the Exponent of a real constant is to the right of Eor e.
Mantissa and Exponent of the above two number are shown below.

14

 The real constants in exponential form and characterized by the
following characteristics: • The mantissa must have at least one digit. • The mantissa is followed by the letter E or e and the exponent. • The exponent must have at least one digit and must be an integer. • A sign for the exponent is optional. Some examples of valid real constants: 3E4 23e-6 0.34E6 Some examples of invalid real constants: 23E - No digit specified for exponent 23e4.5 - Exponent should not be a fraction 23,4e5 - Commas are not allowed 256*e8- * not allowed 2. Character Constants Any character enclosed with in single quotes (‘) is called character constant. A character constant: • May be a single alphabet, single digit or single special character
placed with in single quotes. • Has a maximum length of 1 character.

• ‘C’ • ‘c’ • ‘:’ • ‘*’

15

3. String Constants A string constant is a sequence of alphanumeric characters enclosed
in double quotes whose maximum length is 255 characters. Following are the examples of valid string constants: • “My name is Krishna” • “Bible” • “Salary is 18000.00” Following are the examples of invalid string constants: My name is
Krishna marks.

 - Character are not enclosed in double quotation
 “My name is Krishna - Closing double quotation mark is missing. ‘My name is

Krishna’ marks
 - Characters are not enclosed in double quotation

 b. Reserve Words/Keywords In C language , some words are reserved to do specific tasks intended for
them and are called Keywords or Reserve words. The list reserve words are auto do goto

break double if
case else int
char extern long
continue float register
default for return
short sezeof static
struct switch typedef
union unsigned void
while const entry
violate enum noalias

16

 c. Delimiters This is symbol that has syntactic meaning and has got significance.
These will not specify any operation to result in a value. C language
delimiters list is given below Symbol Name Meaning
Hash Pre-processor directive
, comma Variable delimiter to separate variable
: colon label delimiter
; Semicolon statement delimiter
() parenthesis used for expressions
{ } curly braces used for blocking of statements
[] square braces used along with arrays d. Variables / Identifiers These are the names of the objects, whose values can be changed
during the program execution. Variables are named with description that
transmits the value it holds. [A quantity of an item, which can be change its value during the
executionof program is called variable. It is also known as Identifier]. Rules for naming a variable:- It can be of letters, digits and underscore(_) First letter should be a letter or an underscore, but it should not

be a digit. Reserve words cannot be used as variable names. Example: basic, root, rate, roll-no etc are valid names. Declaration of variables:
Syntax type Variable list
int i, j i, j are declared as integers
float salary salary is declared ad floating point variable
Char sex sex is declared as character variable

17

2.4 Operators An Operator is a symbol that operates on a certain data type. The data
items that operators act upon are called operands. Some operators require
two operands, some operators act upon only one operand. In C, operators
can be classified into various categories based on their utility and action. 1. Arithmetic Operators 5. Increment & Decrement Operator 2. Relational Operators 6. Conditional Operator 3. Logical Operator 7. Bitwise Operator 4. Assignment Operator 8. Comma Operator 1. Arithmetic Operators The Arithmetic operators performs arithmetic operations. The Arithmetic
operators can operate on any built in data type. A list of arithmetic operators are Operator Meaning + Addition - Subtraction * Multiplication / Division % Modulo division 2. Relational Operators Relational Operators are used to compare arithmetic, logical and character
expressions. The Relational Operators compare their left hand side expression with
their right hand side expression. Then evaluates to an integer. If the Expression is
false it evaluate to “zero”(0) if the expression is true it evaluate to “one” Operator Meaning < Less than > Greater than <= Less than or Equal to >= Greater than or Equal to = = Equal to

18

 The Relational Operators are represented in the following manner: Expression-1 Relational Operator Expression-2 The Expression-1 will be compared with Expression -2 and depending

on the relation the result will be either “TRUE” OR “FALSE”. Examples : Expression Evaluate to (5 <= 10) ———————— 1 (-35 > 10) ———————— 0 (X < 10) ———————— 1 (if value of x is less than 10) 0 Other wise (a + b) = = (c + d) 1 (if sum of a and b is equal to sum of c, d) 0 Other wise 3. Logical Operators A logical operator is used to evaluate logical and relational expressions. The logical operators act upon operands that are themselves logical expressions. There are three logical operators. Operators Expression && Logical AND || Logical OR !Logical NOT Logical And (&&): A compound Expression is true when two
expressionwhen two expressions are true. The && is used in the following
manner. Exp1 && Exp2. The result of a logical AND operation will be true only if both operands are true. The results of logical operators are:

19

Exp1 Op. Exp2 Result True && True True
True && False False False && False False False && True False Example: a = 5; b = 10; c = 15; Exp1 Exp2 Result 1. (a< b) && (b < c) => True 2. (a> b) && (b < c) => False 3. (a< b) && (b > c) => False 4. (a> b) && (b > c) => False Logical OR:A compound expression is false when all expression arefalse

otherwise the compound expression is true. The operator “||” is used as It evaluates
to true if either exp-1 or exp-2 is true. The truth table of “OR” is Exp1 || Exp2 Exp1 Operator Exp2 Result:

True || True True
True || False True
False || True True
False || False False Example: a = 5; b = 10; c = 15; Exp1 Exp2 Result 1. (a< b) || (b < c) => True 2. (a> b) || (b < c) => True 3. (a< b) || (b > c) => True 4. (a> b) || (b > c) => False Logical NOT: TheNOT (!)operator takes single expression

andevaluates to true(1) if the expression is false (0) or it evaluates to
false (0) if expression is true (1). The general form of the expression. ! (Relational Expression) The truth table of NOT :

20

 Operator. Exp1 Result ! True False ! False True Example: a = 5; b = 10; c = 15 1. !(a< b) False 2. !(a> b) True 4. Assignment Operator An assignment operator is used to assign a value to a variable. The
most commonly used assignment operator is =. The general format for
assignment operator is : <Identifer> = < expression > Where identifier represent a variable and expression represents a
constant, a variable or a Complex expression. If the two operands in an assignment expression are of different
data types, then the value of the expression on the right will
automatically be converted to the type of the identifier on the left. Example: Suppose that I is an Integer type Variable then 1. I = 3.3 3 (Value of I) 2. I = 3.9 3 (Value of I) 3. I = 5.74 5 (Value of I) Multiple assignment < identifier-1 > = < identifier-2 > = - - - = < identifier-n > = <exp>; Example: a,b,c are integers; j is float variable 1. a = b = c = 3; 2. a = j = 5.6; then a = 5 and j value will be 5.6 C contains the following five additional assignment operators 1. += 2.-= 3. += 4. *= 5. /= The assignment expression is: - Exp1 < Operator> Exp-2 Ex: I = 10 (assume that)

21

Expression Equivalent to Final Value of ‘I’ 1. I + = 5 I = I + 5 15 2. I - = 5 I = I - 5 10 3. I * = 5 I = I * 5 50 4. I / = 5 I = I / 5 10 5. Increment & Decrement Operator The increment/decrement operator act upon a Single operand and
produce a new value is also called as “unary operator”. The increment
operator ++ adds 1 to the operand and the Decrement operator –
subtracts 1 from the operand. Syntax: < operator >< variable name >;

The ++ or – operator can be used in the two ways. Example : ++ a; Pre-increment (or) a++ Post increment —a; Pre-
Decrement (or) a— Post decrement 1. ++ aImmediately increments the value of a by 1. 2. a ++ The value of the a will be increment by 1 after it is utilized. Example 1: Suppose a = 5 ; Statements Output printf (“a value is %d”, a); a value is 5 printf (“a value is %d”, ++ a); a value is 6 printf (“a value is %d “, a) ; a value is 6 Example 2:Suppose : a = 5 ; Statements Output printf (“a value is %d “, a); a value is 5 printf (“a value is %d “, a++); a value is 5 printf (“a value is %d “,a); a value is 6 a and a- will be act on operand by decrement value like increment operator.

22

6. Conditional operator (or) Ternary operator (? :)
 It is called ternary because it uses three expression. The ternary

operator acts like If- Else construction. Syn :(<Exp –1 > ?<Exp-2> : <Exp-3>); Expression-1 is evaluated first. If Exp-1 is true then Exp-2 is
evaluated other wise it evaluate Exp-3 will be evaluated. Flow Chart : Exp-1 Exp-2 Exp-3 Exit Example: 1. a = 5 ; b = 3; (a> b ? printf (“a is larger”) : printf (“b is larger”)); Output is :a is larger 2. a = 3; b = 3; (a>b ?printf (“a is larger”) : printf (“b is larger”)); Output is :b is larger 7. Bit wise Operator A bitwise operator operates on each bit of data. These
bitwiseoperator can be divided into three categories. i. The logical bitwise operators. ii. The shift operators iii. The one’s complement operator. i) The logical Bitwise Operator :There are three logical bitwise operators.

a) Bitwise AND & b) Bitwise OR | c) Bitwise exclusive XOR ^

 Suppose b1 and b2 represent the corresponding bits with in the first
and second operands, respectively. B1 B2 B1 & B2 B1 | B2 B1 ^ B2

23

 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 The operations are carried out independently on each pair of
corresponding bits within the operand thus the least significant bits (ie
the right most bits) within the two operands. Will be compared until all
the bits have been compared. The results of these comparisons are A Bitwise AND expression will return a 1 if both bits have a value of 1. Other wise, it will return a value of 0. A Bitwise OR expression will return a 1 if one or more of the bits
have a value of 1. Otherwise, it will return a value of 0. A Bitwise EXCLUSIVE OR expression will return a 1 if one of
the bits has a value of 1 and the other has a value of 0. Otherwise, if will
return a value of 0. Example::Variable Value Binary Pattern X 5 0101 Y 2 0010 X & Y 0 0000 X | Y 7 0111 X ^ Y 7 0111 ii) The Bitwise shift Operations: The two bitwise shift operators are
Shift left (<<) and Shift right (>>). Each operator requires two
operands.The first operand that represents the bit pattern to be shifted. The
second is an unsigned integer that indicates the number of displacements. Example: c = a << 3; The value in the integer a is shifted to the left by three bit position.
The result is assigned to the c.

24

 A = 13; c= A<<3; Left shift << c= 13 * 2 3 = 104; Binary no 0000 0000 0000 1101 After left bit shift by 3 places ie,. a<<3 0000 0000 0110 1000 The right –bit – shift operator (>>) is also a binary operator. Example: c = a >>2 ; The value of a is shifted to the right by 2 position insert 0’s Right – shift >> drop off 0’s 0000 0000 0000 1101 After right shift by 2 places is a>>2 0000 0000 0000 0011 c=13>>2 c= 13/4=3 iii) Bit wise complement: The complement op.~ switches all the bits in
abinary pattern, that is all the 0’s becomes 1’s and all the 1’s becomes 0’s. variable value Binary patter x 23 0001 0111 ~x 132 1110 1000 8. Comma Operator A set of expressions separated by using commas is a valid
construction in c language. Example :inti, j; i= (j = 3, j + 2) ; The first expression is j = 3 and second is j + 2. These expressions
are evaluated from left to right. From the above example I = 5. Size of operator: The operator size operator gives the size of the
datatype or variable in terms of bytes occupied in the memory. This
operator allows a determination of the no of bytes allocated to various Data
items Example :inti; float x; double d; char c;OUTPUT

25

Printf (“integer : %d\n”, sizeof(i)); Integer : 2 Printf (“float : %d\n”, sizeof(i)); Float : 4 Printf (“double : %d\n”, sizeof(i)); double : 8 Printf (“char : %d\n”,sizeof(i)); character : 1
 2.5 Expressions An expression can be defined as collection of data object and

operators that can be evaluated to lead a single new data object. A data
object is a constant, variable or another data object. Example : a + b x + y + 6.0 3.14 * r * r (a + b) * (a – b) The above expressions are called as arithmetic expressions
because the data objects (constants and variables) are connected using
arithmetic operators. Evaluation Procedure: The evaluation of arithmetic expressions is
as perthe hierarchy rules governed by the C compiler. The precedence or
hierarchy rules for arithmetic expressions are 1. The expression is scanned from left to right. 2. While scanning the expression, the evaluation preference for the operators are *, /, % - evaluated first +, - - evaluated next 3. To overcome the above precedence rules, user has to make use
of parenthesis. If parenthesis is used, the expression/ expressions with in
parenthesis are evaluated first as per the above hierarchy.

26

 UNIT - II

Statements Data Input & Output An input/output function can be accessed from anywhere within a program
simply by writing the function name followed by a list of arguments enclosed in
parentheses. The arguments represent data items that are sent to the function.
Some input/output Functions do not require arguments though the empty
parentheses must still appear. They are: Input Statements Output Statements

Formatted scanf() printf()
Unformatted getchar()gets() putchar()puts() getchar() Single characters can be entered into the computer using the C library Function getchar(). It returns a single character from a standard input device. The function does not require any arguments. Syntax: <Character variable> = getchar(); Example: char c; c = getchar(); putchar() Single characters can be displayed using function putchar(). It

returns a single character to a standard output device. It must be
expressed as an argument to the function. Syntax: putchar(<character variable>); Example: char c; ———— putchar(c); gets() The function gets() receives the string from the standard input device. Syntax: gets(<string type variable or array of char>); Where s is a string.

27

 The function gets accepts the string as a parameter from the
keyboard, till a newline character is encountered. At end the function
appends a “null” terminator and returns. puts() The function puts() outputs the string to the standard output device.

 Syntax: puts(s); Where s is a string that was real with gets(); Example: main() { char line[80]; gets(line); puts(line); } scanf() Scanf() function can be used input the data into the memory from the standard
input device. This function can be used to enter any combination of numerical
Values, single characters and strings. The function returns number of data items. Syntax:-scanf (“control strings”, &arg1,&arg2,——&argn); Where control string referes to a string containing certain required
formatting information and arg1, arg2——argn are arguments that
represent the individual input data items. Example: #include<stdio.h> main() { char item[20]; intpartno; float cost; scanf(“%s %d %f”,&item,&partno,&cost); }

28

Where s, d, f with % are conversion characters. The conversion
characters indicate the type of the corresponding data. Commonly used
conversion characters from data input.

 Conversion Characters Characters Meaning %c data item is a single character. %d data item is a decimal integer. %f data item is a floating point value. %e data item is a floating point value. %g data item is a floating point value. %h data item is a short integer. %s data item is a string. %x data item is a hexadecimal integer. %o data item is a octal interger. printf() The printf() function is used to print the data from the computer’s
memory onto a standard output device. This function can be used to output
any combination of numerical values, single character and strings. Syntax: printf(“control string”, arg-1, arg-2,———arg-n); Where control string is a string that contains formatted information,
and arg-1, arg-2 —— are arguments that represent the output data items. Example: #include<stdio.h> main() { char item[20]; intpartno; float cost; ——————— printf (“%s %d %f”, item, partno, cost); } (Where %s %d %f are conversion characters.)

29

2.6 Assignment Statement Assignment statement can be defined as the statement through
which the value obtained from an expression can be stored in a variable. The general form of assignment statement is

< variable name> = < arithmetic

expression> ; Example: sum = a + b + c;
tot = s1 + s2 + s3;
area = ½ * b* h;

 2.7 I/O Control Structure (if, If-else, for, while, do-while) Conditional Statements The conditional expressions are mainly used for decision making. The

following statements are used to perform the task of the conditional operations. a. if statement. b. If-else statement. Or 2 way if statement c. Nested else-if statement. d. Nested if –else statement. e. Switch statement.
a. if statement

The if statement is used to express conditional expressions. If the given
condition is true then it will execute the statements otherwise skip the statements. The simple structure of ‘if’ statement is i. If (<condtionalexpressione>)

statement-1; (or) ii. If (<condtionalexpressione>) {

30

 statement-1; statement-2; statement-3; …………… …………… STATEMENT-N } The expression is evaluated and if the expression is true the
statements will be executed. If the expression is false the statements are
skipped and execution continues with the next statements. Example: a=20; b=10; if (a > b) printf (“big number is %d” a); b. if-else statements The if-else statements is used to execute the either of the two
statements depending upon the value of the exp. The general form is if(<exp>) { Statement-1; Statement -2; ………….. “ SET-I” …………… Statement- n; } else { Statement1; Statement 2;

31

………….. “ SET-II
…………… Statement n; } SET - I Statements will be executed if the exp is true. SET – II Statements will be executed if the exp is false. Example: if(a> b) printf (“a is greater than b”); else printf (“a is not greater than b”); c. Nested else-if statements If some situations if may be desired to nest multiple if-else statements.

In this situation one of several different course of action will be selected. Syntax if(<exp1>) Statement-1; else if (<exp2>) Statement-2; else if (<exp3>) Statement-3; else Statement-4; When a logical expression is encountered whose value is true the
corresponding statements will be executed and the remainder of the
nested else if statement will be bypassed. Thus control will be
transferred out of the entire nest once a true condition is encountered. The final else clause will be apply if none of the exp is true.

32

 d. nestedif-else statement It is possible to nest if-else statements, one within another. There
are several different form that nested if-else statements can take. The most general form of two-layer nesting is if(exp1) if(exp3) Statement-3; else Statement-4; else if(exp2) Statement-1; else Statement-2; One complete if-else statement will be executed if expression1 is true and
another complete if-else statement will be executed if expression1 is false. e. Switch statement A switch statement is used to choose a statement (for a group of
statement) among several alternatives. The switch statements is useful
when a variable is to be compared with different constants and in case it
is equal to a constant a set of statements are to be executed. Syntax: Switch (exp) { case constant-1: statements1; case constant-2:

33

 statements2; ——— ——— default: statement n; } Where constant1, constanat2 — — — are either integer constants or character

constants. When the switch statement is executed the exp is evaluated and control
is transferred directly to the group of statement whose case label value matches the
value of the exp. If none of the case label values matches to the value of the exp
then the default part statements will be executed. If none of the case labels matches to the value of the exp and the
default group is not present then no action will be taken by the switch
statement and control will be transferred out of the switch statement. A simple switch statement is illustrated below. Example 1: main() { char choice; printf(“Enter Your Color (Red - R/r, White – W/w)”); choice=getchar(); switch(choice= getchar()) { case‘r’: case‘R’: printf (“Red”); break; case‘w’: case‘W’:

34

 printf (“white”); break; default : printf (“no colour”); } Example 2: switch(day) { case 1: printf (“Monday”); break; ——— ——— } 2.8 Structure for Looping Statements Loop statements are used to execute the statements repeatedly as long
as an expression is true. When the expression becomes false then the
control transferred out of the loop. There are three kinds of loops in C. a) while b) do-while c) for a. while statement while loop will be executed as long as the exp is true. Syntax: while (exp) { statements; } The statements will be executed repeatedly as long as the exp is true. If
the exp is false then the control is transferred out of the while loop. Example: int digit = 1; While (digit <=5) FALSE

35

{ printf (“%d”, digit); TRUE Cond Exp Statements; ++digit; } The while loop is top tested i.e., it evaluates the condition before
executing statements in the body. Then it is called entry control loop. b. do-while statement The do-while loop evaluates the condition after the execution of the
statements in the body. Syntax: do Statement; While<exp>; Here also the statements will be executed as long as the exp value is
true. If the expression is false the control come out of the loop. Example: -int d=1; do { printf (“%d”, d); FALSE ++d; } while (d<=5);

TRUE Cond Exp
statements exit

36

 The statement with in the do-while loop will be executed at least

once. So the do-while loop is called a bottom tested loop. c. for statement The for loop is used to executing the structure number of times. The
for loop includes three expressions. First expression specifies an initial
value for an index (initial value), second expression that determines
whether or not the loop is continued (conditional statement) and a third
expression used to modify the index (increment or decrement) of each pass. Note: Generally for loop used when the number of passes is known
inadvance. Syntax: for (exp1;exp2;exp3) { Statement –1; Statement – 2; —————; FALSE —————; Statement - n; TRUE } exp2 Statements; exp3 Exit loop exp1 start Where expression-1 is used to initialize the control variable. This
expression is executed this expression is executed is only once at the
time of beginning of loop. Where expression-2 is a logical expression. If expression-2 is true,
the statements will be executed, other wise the loop will be terminated.
This expression is evaluated before every execution of the statement. Where expression-3 is an increment or decrement expression after
executing the statements, the control is transferred back to the

37

expression-3 and updated. There are different formats available in for
loop. Some of the expression of loop can be omit. Format - I for(; exp2; exp3) Statements; In this format the initialization expression (i.e., exp1) is omitted.
The initial value of the variable can be assigned outside of the for loop. Example 1 inti = 1; for(; i<=10; i++) printf (“%d \n”, i); Format - II for(; exp2 ;) Statements; In this format the initialization and increment or decrement
expression (i.eexpression-1 and expression-3) are omitted. The exp-3
can be given at thestatement part. Example 2 inti = 1; for(; i<=10;) { printf (“%d \n”,i); i++; } Formate - III for(; ;) Statements;

38

 In this format the three expressions are omitted. The loop itself
assumes the expression-2is true. So Statements will be executed infinitely. Example 3 inti = 1; for (; i<=10;) { printf (“%d \n”,i); i++; }
2.9 Nested Looping Statements Many applications require nesting of the loop statements, allowing
on loop statement to be embedded with in another loop statement. Definition Nesting can be defined as the method of embedding one control
structure with in another control structure. While making control structure s to be reside one with in another
,the inner and outer control structures may be of the same type or may
not be of same type. But ,it is essential for us to ensure that one control
structure is completely embedded within another. /*program to implement nesting*/ #include <stdio.h> main() { inta,b,c, for (a=1,a< 2, a++) { printf (“%d”,a) for (b=1,b<=2,b++) {

39

 print f(%d”,b) for (c=1,c<=2,c++) { print f(“ My Name is Sunny \n”); } } } } 2. 10 Multi Branching Statement (switch), Break, and
Continue For effective handling of the loop structures, C allows the following
types of control break statements. a. Break Statement b. Continue Statement a. Break Statement The break statement is used to terminate the control form the loops or
to exit from a switch. It can be used within a for, while, do-while, for. The general format is : break; If break statement is included in a while, do-while or for then
control will immediately be transferred out of the loop when the break
statement is encountered. Example for(; ;) normal loop { break Condition within loop scanf (“%d”,&n); if (n < -1)

40

 break; sum = sum + n; } b. The Continue Statement The continue statement is used to bypass the remainder of the current
pass through a loop. The loop does not terminate when a continue statement
is encountered. Rather, the remaining loop statements are skipped and the
proceeds directly to the next pass through the loop. The “continue” that can
be included with in a while a do-while and a for loop statement. General form : continue; The continue statement is used for the inverse operation of the
breakstatement . Condition with in loop Remaining part of loop continue Example while (x<=100) { if (x <= 0) { printf (“zero or negative value found \n”); continue; } } The above program segment will process only the positive whenever a
zero or negative value is encountered, the message will be displayed and it
continue the same loop as long as the given condition is satisfied.

41

2.12 Unconditional Branching (Go To Statement) goto statement The go to statement is used to alter the program execution
sequence by transferring the control to some other part of the program. Syntax Where label is an identifier used to label the target statement to which
the control would be transferred the target statement will appear as: Syntax goto<label>; label : statements;

 Example 1 #include <stdio.h> main(); { inta,b; printf (“Enter the two numbers”); scanf (“%d %d”,&a,&b); if (a>b) goto big; else goto small; big:printf (“big value is %d”,a); goto stop; small:printf (“small value is %d”,b); goto stop; stop; }

42

 Functions 3.0 Introduction Experienced programmer used to divide large (lengthy) programs in

to parts, and then manage those parts to be solved one by one. This
method of programming approach is to organize the typical work in a
systematic manner. This aspect is practically achieved n C language
thorough the concept known as ‘Modular Programming”. The entire program is divided into a series of modules and each
module is intended to perform a particular task. The detailed work to be
solved by the module is described in the module (sub program) only and
the main program only contains a series of modulus that are to be
executed. Division of a main program in to set of modules and assigning
various tasks to each module depends on the programmer’s efficiency. Whereas there is a need for us repeatedly execute one block of statements
in one place of the program, loop statements can be used. But, a block of
statements need to be repeatedly executed in many parts of the program, then
repeated coding as well as wastage of the vital computer resource memory will
wasted. . If we adopt modular programming technique, these disadvantages can
be eliminated. The modules incorporated in C are called as the FUNCTIONS,
and each function in the program is meant for doing specific task. C functions
are easy to use and very efficient also. 3.1 Functions Definition A function can be defined as a subprogram which is meant for
doing a specific task. In a C program, a function definition will have name, parentheses
pair contain zero or more parameters and a body. The parameters used in
the parenthesis need to be declared with type and if not declared, they
will be considered as of integer type. The general form of the function is : function type name <arg1,arg2,arg3, ————,argn>) data type arg1, arg2,;

43

data type argn; { body of function;

—————————— —————————— —————————— return (<something>); } From the above form the main components of function are • Return type • Function name • Function body • Return statement Return Type Refers to the type of value it would return to the calling portion of

the program. It can have any of the basic data types such as int, float,
char, etc. When a function is not supposed to return any value, it may be
declared as type void Example void function name(- - - - - - - - - -); int function name(- - - - - - - - - -); char function name (— - - - - - -); Function Name The function name can be any name conforming to the syntax rules
of the variable. A function name is relevant to the function operation. Example output(); read data();

 Formal arguments

44

The arguments are called formal arguments (or) formal
parameters, because they represent the names of data items that are
transferred into the function from the calling portion of the program. Any variable declared in the body of a function is said to be local to that function,
other variable which were not declared either arguments or in the function body, are
considered “globol” to the function and must be defined externally. Example int biggest (int a, int b) { ———————————— ———————————— ———————————— return(); } a, b are the formal arguments. Function Body Function body is a compound statement defines the action to be
taken by the function. It should include one or more “return” statement
in order to return a value to the calling portion of the program. Example int biggest(int a, int b) { if (a > b) return(a); body of function. else return(b); }

45

Every C program consists of one or more functions. One of these

functions must be called as main. Execution of the program will always begin
by carrying out the instructions in main. Additional functions will be
subordinate to main. If a program contains multiple functions, their definitions
may appear in any order, though they must be independent of one another.
That is, one function definition can’t be embedded within another. Generally a function will process information that is passed to it from the
calling portion of the program and return a single value. Information is passed to
the function via arguments (parameters) and returned via the “return” statement. Some functions accept information but do not return anything (ex:printf()) whereas other functions (ex:scanf()) return multiple values. 3.1.1 The Return Statement Every function subprogram in C will have return statement. This
statement is used in function subprograms to return a value to the calling
program/function. This statement can appear anywhere within a function
body and we may have more than one return statement inside a function. The general format of return statement is return; (or) return (expression); If no value is returned from function to the calling program, then
there is no need of return statement to be present inside the function. Programs using function Call Techniques Example 1: Write a program to find factorial to the given positive
integer,using function technique. # include

<stdio.h> main()
{ int n; printf (“ Enter any positive

number\n”); scanf(“%d”, &n);

46

 printf(“ The factorial of %d s %d \n”,fact (n)); } fact(i) int I; { int j; f = 1 ; for (j = I; j>0; j - -) f = f * I;
return (f) ; } In the above program function with name ‘fact’ is called by the

main program. The function fact is called with n as parameter. The value
is returned through variable f to the main program. Example 2: Write a program to find the value of f(x) as f(x) = x2+
4, forthe given of x. Make use of function technique. # include

<stdio.h> main() { f (); } f () { intx,y ; printf(“ Enter value of x \n”); scanf(“ %d”, & x); y = (x * x + 4); printf (“ The value of f (x) id %d \n”, y) ; }

47

3.3 Advantages of Function The main advantages of using a function are: • Easy to write a correct small function • Easy to read and debug a function. • Easier to maintain or modify such a function • Small functions tend to be self documenting and highly readable • It can be called any number of times in any place with
different parameters. Storage class A variable’s storage class explains where the variable will be

stored, its initial value and life of the variable. Iteration The block of statements is executed repeatedly using loops is called Iteration

 Categories of Functions A function, depending on, whether arguments are present or not and
a value is returned or not. A function may be belonging to one of the following types. 1. Function with no arguments and no return values. 2. Function with arguments and no return values. 3. Function with arguments and return values 3.4 Advanced Featured of Functions a. Function Prototypes b. Calling functions by value or by reference c. Recursion. a. Function Prototypes The user defined functions may be classified as three ways based on
the formal arguments passed and the usage of the return statement. a. Functions with no arguments and no return value

48

b. Functions with arguments no return value c. Functions with arguments and return value. a. Functions with no arguments and no return value A function is invoked without passing any formal arguments from
the calling portion of a program and also the function does not return
back any value to the called function. There is no communication
between the calling portion of a program and a called function block. Example: #include <stdio.h> main() { void message(); Function declaration message(); Function calling }

void message() { printf (“GOVT JUNIOR COLLEGE \n”); printf (“\t HYDERABAD”); } b. Function with arguments and no return value This type of functions passes some formal arguments to a function but the
function does not return back any value to the caller. It is any one way data
communication between a calling portion of the program and the function block. Example #include <stdio.h> main() { void square(int); printf (“Enter a value for n \n”); scanf (“%d”,&n); square(n); }

49

void square (int n) { int value; value = n * n; printf (“square of %d is %d “,n,value); } c. Function with arguments and return value The third type of function passes some formal arguments to a
function from a calling portion of the program and the computer value is
transferred back to the caller. Data are communicated between the
calling portion and the function block.

Example #include <stdio.h> main() { int square (int); int value; printf (“enter a value for n \n”); scanf(“%d”, &n); value = square(n); printf (“square of %d is %d “,n, value); } int square(int n) { int p; p = n * n; return(p); } The keyword VOID can be used as a type specifier when defining a
function that does not return anything or when the function definition
does not include any arguments.

50

The presence of this keyword is not mandatory but it is good
programming practice to make use of this feature. Actual and Formal Parameters (or) Arguments Function parameters are the means of communication between the calling
and the called functions. The parameters may classify under two groups. 1. Formal Parameters 2. Actual Parameters

1. Formal Parameters The formal parameters are the parameters given in function
declaration and function definition. When the function is invoked, the
formal parameters are replaced by the actual parameters. 2. Actual Parameters The parameters appearing in the function call are referred to as
actual parameters. The actual arguments may be expressed as constants,
single variables or more complex expression. Each actual parameter
must be of the same data type as its corresponding formal parameters. Example #include <stdio.h> int sum (int a , int b) { int c; c = a + b; return(c); } main() { intx,y,z; printf (“enter value for x,y \n”); scanf (“%d %d”,&x,&y); z = x + y; printf (“ sum is = %d”,z); }

51

 The variables a and b defined in function definition are known as
formalparameters. The variables x and y are actual parameters.

 Local and Global Variable: The variables may be classified as local or global variables. Local Variable The variables defined can be accessed only within the block in

which they are declared. These variables are called “Local” variables Example funct (int ,int j) { intk,m; ————; ————; } The integer variables k and m are defined within a function block of
the “funct()”. All the variables to be used within a function block must be
either defined at the beginning of the block or before using in the statement.
Local variables one referred only the particular part of a block of a function. Global Variable Global variables defined outside the main function block. Global
variables are not contained to a single function. Global variables that are
recognized in two or more functions. Their scope extends from the point
of definition through the remainder of the program. b. Calling functions by value or by reference The arguments are sent to the functions and their values are copied in the
corresponding function. This is a sort of information inter change between the
calling function and called function. This is known as Parameter passing. It is a
mechanism through which arguments are passed to the called function for the
required processing. There are two methods of parameter passing. 1. Call by Value 2. Call by reference. 1. Call by value: When the values of arguments are passed from
callingfunction to a called function, these values are copied in to the called

52

function. If any changes are made to these values in the called function,
there are NOCHANGE the original values within the calling function. Example #include <stdio.h> main(); { int n1,n2,x; intcal_by_val(); N1 = 6; N2 = 9; printf(n1 = %d and n2= %d\n”, n1,n2); X = cal_by_Val(n1,n2); Printf(n1 = %d and n2= %d\n”, n1,n2); Printf(“ x= %d\n”, x); / * end of main*/ /*function to illustrate call by value*/ Cal_by_val(p1,p2) int p1,p2; { int sum; Sum = (p1 + p2); P1 + = 2; P2* = p1; printf(p1 = %d and p2= %d\n”, p1,p2); return(sum); } }

53

 When the program is executed the output will be displayed N1 = 6 and n2 = 9 P1 = 8 and p2 = 72 N1 = 6 and n2 = 9 X = 15 There is NO CHANGE in the values of n1 and n2 before and after
the function is executed. 2. Call by Reference: In this method, the actual values are not
passed,instead their addresses are passed. There is no copying of values since
their memory locations are referenced. If any modification is made to the
values in the called function, then the original values get changed with in the
calling function. Passing of addresses requires the knowledge of pointers. Example This program accepts a one-dimensional array of integers and sorts them
in ascending order. [This program involves passing the array to the function]. # include

<stdio.h> main();
{ intnum[20], I,max;
void sort_nums();
printf(“ enter the size of the
array”\n”); scanf(“%d”, &max);
for(i=0; i<max;I++) sort_nums(num,max) /* Function reference*/ printf(“sorted numbers are as follows\n”); for(i=0; i<max;I++) printf(“%3d\n”,num[i]); /* end of the main*/ /* function to sort list of numbers*/

54

Void sort_nums(a,n) Inta[],n; { IntI,j,dummy; For(i=0;i<n;i++) { For(j=0; j<n; j++) { If (a[i] >a[j]) { Dummy = a[i]; a[i] = a[j]; a[j] = dummy; } } } } 3.5 Recursion One of the special features of C language is its support to recursion.
Very few computer languages will support this feature. Recursion can be defines as the process of a function by which it
can call itself. The function which calls itself again and again either
directly or indirectly is known as recursive function. The normal function is usually called by the main () function, by
mans of its name. But, the recursive function will be called by itself
depending on the condition satisfaction. For Example, main () {

55

f1() ; ——— Function called by main —————— —————— —————— } f1() ; ——— Function definition { —————— —————— —————— f1() ; ——— Function called by itself } In the above, the main () function s calling a function named f1()
by invoking it with its name. But, inside the function definition f1(),
there is another invoking of function and it is the function f1() again. Example programs on Recursion Example 1 : Write a program to find the factorial of given non-
negativeinteger using recursive function. #include<stdio.h> main () { int result, n; printf(“ Enter any non-negative integer\n”); scanf (“ %d”, & n); result = fact(n); printf (“ The factorial of %d is %d \n”, n, result); }

56

fact(n) int n; { inti ; i = 1; if (i = = 1) return (i); else { i = i * fact (n -

1); return (i); } } Example 2: Write ‘C’ program to generate Fibonacci series up to a
limitusing recursion function. . #include<stdio.h> #include<conio.h> int Fibonacci (int); void main () { inti, n; clrscr (); printf (“Enter no. of Elements to be generated” \n) scanf (“%d”, &n); for (i=1; i<n; i++) printf (“%d”, Fibonacci (i)); getch(); }

57

 int Fibonacci (int n) { intfno; if (n= =1) return 1; else if (n= =2); return 1; else fno=Fibonacci (n-1) + Fibonacci (n-2); returnfno; }

58

 UNIT - III

4.0 Arrays
Arrays a kind of data structure that can store a fixed-size sequential collection of elements of the
same type. An array is used to store a collection of data, but it is often more useful to think of an
array as a collection of variables of the same type.
Instead of declaring individual variables, such as number0, number1, ..., and number99, you
declare one array variable such as numbers and use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables. A specific element in an array is accessed by an
index.
All arrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.

4.1 Declaring Arrays
To declare an array in C, a programmer specifies the type of the elements and the number of
elements required by an array as follows −
type arrayName [arraySize];
This is called a single-dimensional array. The arraySize must be an integer constant greater
than zero and type can be any valid C data type. For example, to declare a 10-element array
called balance of type double, use this statement −
double balance[10];
Here balance is a variable array which is sufficient to hold up to 10 double numbers.
4.2 Initializing Arrays
You can initialize an array in C either one by one or using a single statement as follows −
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

59

The number of values between braces { } cannot be larger than the number of elements that we
declare for the array between square brackets [].
If you omit the size of the array, an array just big enough to hold the initialization is created.
Therefore, if you write −
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
You will create exactly the same array as you did in the previous example. Following is an
example to assign a single element of the array −
balance[4] = 50.0;
The above statement assigns the 5th element in the array with a value of 50.0. All arrays have 0
as the index of their first element which is also called the base index and the last index of an
array will be total size of the array minus 1. Shown below is the pictorial representation of the
array we discussed above −

4.3 Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the
element within square brackets after the name of the array. For example −
double salary = balance[9];

4.4. Two-dimensional Arrays
The simplest form of multidimensional array is the two-dimensional array. A two-dimensional
array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array
of size [x][y], you would write something as follows −
type arrayName [x][y];
Where type can be any valid C data type and arrayName will be a valid C identifier. A two-
dimensional array can be considered as a table which will have x number of rows and y number
of columns. A two-dimensional array a, which contains three rows and four columns can be
shown as follows −

60

Thus, every element in the array a is identified by an element name of the form a[i][j], where
'a' is the name of the array, and 'i' and 'j' are the subscripts that uniquely identify each element in
'a'.
4.4.1 Initializing Two-Dimensional Arrays
Multidimensional arrays may be initialized by specifying bracketed values for each row.
Following is an array with 3 rows and each row has 4 columns.
int a[3][4] = {
 {0, 1, 2, 3} , /* initializers for row indexed by 0 */
 {4, 5, 6, 7} , /* initializers for row indexed by 1 */
 {8, 9, 10, 11} /* initializers for row indexed by 2 */
};
The nested braces, which indicate the intended row, are optional. The following initialization is
equivalent to the previous example −
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};
4.4.2 Accessing Two-Dimensional Array Elements
An element in a two-dimensional array is accessed by using the subscripts, i.e., row index and
column index of the array. For example −
int val = a[2][3];
The above statement will take the 4th element from the 3rd row of the array.

61

5.0 Strings
Strings are actually one-dimensional array of characters terminated by a null character '\0'. Thus
a null-terminated string contains the characters that comprise the string followed by a null.
The following declaration and initialization create a string consisting of the word "Hello". To
hold the null character at the end of the array, the size of the character array containing the
string is one more than the number of characters in the word "Hello."
char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
If you follow the rule of array initialization then you can write the above statement as follows −
char greeting[] = "Hello";
Following is the memory presentation of the above defined string in C/C++ −

Actually, you do not place the null character at the end of a string constant. The C compiler
automatically places the '\0' at the end of the string when it initializes the array. Let us try to
print the above mentioned string −
 Live Demo
#include <stdio.h>

int main () {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
 printf("Greeting message: %s\n", greeting);
 return 0;
}

62

When the above code is compiled and executed, it produces the following result −
Greeting message: Hello
C supports a wide range of functions that manipulate null-terminated strings −
Sr.No. Function & Purpose

1 strcpy(s1, s2);
Copies string s2 into string s1.

2 strcat(s1, s2);
Concatenates string s2 onto the end of string s1.

3 strlen(s1);
Returns the length of string s1.

4 strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5 strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in string s1.

6 strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string s1.

6.0 Storage classes

63

A storage class defines the scope (visibility) and life-time of variables and/or functions within a
C Program. They precede the type that they modify. We have four different storage classes in a
C program −

 auto
 register
 static
 extern

The auto Storage Class
The auto storage class is the default storage class for all local variables.
{
 int mount;
 auto int month;
}
The example above defines two variables with in the same storage class. 'auto' can only be used
within functions, i.e., local variables.

The register Storage Class
The register storage class is used to define local variables that should be stored in a register
instead of RAM. This means that the variable has a maximum size equal to the register size
(usually one word) and can't have the unary '&' operator applied to it (as it does not have a
memory location).
{
 register int miles;
}
The register should only be used for variables that require quick access such as counters. It
should also be noted that defining 'register' does not mean that the variable will be stored in a

64

register. It means that it MIGHT be stored in a register depending on hardware and
implementation restrictions.

The static Storage Class
The static storage class instructs the compiler to keep a local variable in existence during the
life-time of the program instead of creating and destroying it each time it comes into and goes
out of scope. Therefore, making local variables static allows them to maintain their values
between function calls.
The static modifier may also be applied to global variables. When this is done, it causes that
variable's scope to be restricted to the file in which it is declared.
In C programming, when static is used on a global variable, it causes only one copy of that
member to be shared by all the objects of its class.
 Live Demo
#include <stdio.h>

/* function declaration */
void func(void);

static int count = 5; /* global variable */

main() {

 while(count--) {
 func();
 }

 return 0;
}

65

/* function definition */
void func(void) {

 static int i = 5; /* local static variable */
 i++;

 printf("i is %d and count is %d\n", i, count);
}
When the above code is compiled and executed, it produces the following result −
i is 6 and count is 4
i is 7 and count is 3
i is 8 and count is 2
i is 9 and count is 1
i is 10 and count is 0

The extern Storage Class
The extern storage class is used to give a reference of a global variable that is visible to ALL
the program files. When you use 'extern', the variable cannot be initialized however, it points
the variable name at a storage location that has been previously defined.
When you have multiple files and you define a global variable or function, which will also be
used in other files, then extern will be used in another file to provide the reference of defined
variable or function. Just for understanding, extern is used to declare a global variable or
function in another file.

 UNIT – IV

7.0 Structures

66

Arrays allow to define type of variables that can hold several data items of the same kind.
Similarly structure is another user defined data type available in C that allows to combine data
items of different kinds.
Structures are used to represent a record. Suppose you want to keep track of your books in a
library. You might want to track the following attributes about each book −

 Title
 Author
 Subject
 Book ID

7.1 Defining a Structure
To define a structure, you must use the struct statement. The struct statement defines a new
data type, with more than one member. The format of the struct statement is as follows −
struct [structure tag] {

 member definition;
 member definition;
 ...
 member definition;
} [one or more structure variables];
The structure tag is optional and each member definition is a normal variable definition, such
as int i; or float f; or any other valid variable definition. At the end of the structure's definition,
before the final semicolon, you can specify one or more structure variables but it is optional.
Here is the way you would declare the Book structure −
struct Books {
 char title[50];
 char author[50];

67

 char subject[100];
 int book_id;
} book;

7.2 Accessing Structure Members
To access any member of a structure, we use the member access operator (.). The member
access operator is coded as a period between the structure variable name and the structure
member that we wish to access. You would use the keyword struct to define variables of
structure type. The following example shows how to use a structure in a program −
 Live Demo
#include <stdio.h>
#include <string.h>

struct Books {
 char title[50];
 char author[50];
 char subject[100];
 int book_id;
};

int main() {

 struct Books Book1; /* Declare Book1 of type Book */
 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

68

 strcpy(Book1.title, "C Programming");
 strcpy(Book1.author, "Nuha Ali");
 strcpy(Book1.subject, "C Programming Tutorial");
 Book1.book_id = 6495407;

 /* book 2 specification */
 strcpy(Book2.title, "Telecom Billing");
 strcpy(Book2.author, "Zara Ali");
 strcpy(Book2.subject, "Telecom Billing Tutorial");
 Book2.book_id = 6495700;

 /* print Book1 info */
 printf("Book 1 title : %s\n", Book1.title);
 printf("Book 1 author : %s\n", Book1.author);
 printf("Book 1 subject : %s\n", Book1.subject);
 printf("Book 1 book_id : %d\n", Book1.book_id);

 /* print Book2 info */
 printf("Book 2 title : %s\n", Book2.title);
 printf("Book 2 author : %s\n", Book2.author);
 printf("Book 2 subject : %s\n", Book2.subject);
 printf("Book 2 book_id : %d\n", Book2.book_id);

 return 0;
}

69

When the above code is compiled and executed, it produces the following result −
Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407
Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

7.3 Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when memory or
data storage is at a premium. Typical examples include −

 Packing several objects into a machine word. e.g. 1 bit flags can be compacted.
 Reading external file formats -- non-standard file formats could be read in, e.g., 9-bit

integers.
C allows us to do this in a structure definition by putting :bit length after the variable. For
example −
struct packed_struct {
 unsigned int f1:1;
 unsigned int f2:1;
 unsigned int f3:1;
 unsigned int f4:1;
 unsigned int type:4;
 unsigned int my_int:9;
} pack;
Here, the packed_struct contains 6 members: Four 1 bit flags f1..f3, a 4-bit type and a 9-bit
my_int.

70

7.4 Unoins
A union is a special data type available in C that allows to store different data types in the same
memory location. You can define a union with many members, but only one member can
contain a value at any given time. Unions provide an efficient way of using the same memory
location for multiple-purpose.
Defining a Union
To define a union, you must use the union statement in the same way as you did while defining
a structure. The union statement defines a new data type with more than one member for your
program. The format of the union statement is as follows −
union [union tag] {
 member definition;
 member definition;
 ...
 member definition;
} [one or more union variables];
The union tag is optional and each member definition is a normal variable definition, such as
int i; or float f; or any other valid variable definition. At the end of the union's definition, before
the final semicolon, you can specify one or more union variables but it is optional. Here is the
way you would define a union type named Data having three members i, f, and str −
union Data {
 int i;
 float f;
 char str[20];
} data;
Now, a variable of Data type can store an integer, a floating-point number, or a string of
characters. It means a single variable, i.e., same memory location, can be used to store multiple
types of data. You can use any built-in or user defined data types inside a union based on your
requirement.

71

The memory occupied by a union will be large enough to hold the largest member of the union.
For example, in the above example, Data type will occupy 20 bytes of memory space because
this is the maximum space which can be occupied by a character string. The following example
displays the total memory size occupied by the above union −
 Live Demo
#include <stdio.h>
#include <string.h>

union Data {
 int i;
 float f;
 char str[20];
};

int main() {

 union Data data;

 printf("Memory size occupied by data : %d\n", sizeof(data));

 return 0;
}
When the above code is compiled and executed, it produces the following result −
Memory size occupied by data : 20

Accessing Union Members

72

To access any member of a union, we use the member access operator (.). The member access
operator is coded as a period between the union variable name and the union member that we
wish to access. You would use the keyword union to define variables of union type.

7.5 Pointers
A pointer is a variable whose value is the address of another variable, i.e., direct address of the
memory location. Like any variable or constant, you must declare a pointer before using it to
store any variable address. The general form of a pointer variable declaration is −
type *var-name;
Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of
the pointer variable. The asterisk * used to declare a pointer is the same asterisk used for
multiplication. However, in this statement the asterisk is being used to designate a variable as a
pointer. Take a look at some of the valid pointer declarations −
int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */
char *ch /* pointer to a character */
The actual data type of the value of all pointers, whether integer, float, character, or otherwise,
is the same, a long hexadecimal number that represents a memory address. The only difference
between pointers of different data types is the data type of the variable or constant that the
pointer points to.
There are a few important operations, which we will do with the help of pointers very
frequently. (a) We define a pointer variable, (b) assign the address of a variable to a pointer
and (c) finally access the value at the address available in the pointer variable. This is done by
using unary operator * that returns the value of the variable located at the address specified by
its operand.

7.5.1 Pointer Aarithmetic

73

A pointer in c is an address, which is a numeric value. Therefore, you can perform arithmetic
operations on a pointer just as you can on a numeric value. There are four arithmetic operators
that can be used on pointers: ++, --, +, and -
To understand pointer arithmetic, let us consider that ptr is an integer pointer which points to
the address 1000. Assuming 32-bit integers, let us perform the following arithmetic operation
on the pointer −
ptr++
After the above operation, the ptr will point to the location 1004 because each time ptr is
incremented, it will point to the next integer location which is 4 bytes next to the current
location. This operation will move the pointer to the next memory location without impacting
the actual value at the memory location. If ptr points to a character whose address is 1000, then
the above operation will point to the location 1001 because the next character will be available
at 1001.
Incrementing a Pointer
We prefer using a pointer in our program instead of an array because the variable pointer can be
incremented, unlike the array name which cannot be incremented because it is a constant
pointer. The following program increments the variable pointer to access each succeeding
element of the array −
 Live Demo
#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};
 int i, *ptr;

 /* let us have array address in pointer */

74

 ptr = var;

 for (i = 0; i < MAX; i++) {

 printf("Address of var[%d] = %x\n", i, ptr);
 printf("Value of var[%d] = %d\n", i, *ptr);

 /* move to the next location */
 ptr++;
 }

 return 0;
}
When the above code is compiled and executed, it produces the following result −
Address of var[0] = bf882b30
Value of var[0] = 10
Address of var[1] = bf882b34
Value of var[1] = 100
Address of var[2] = bf882b38
Value of var[2] = 200

Decrementing a Pointer
The same considerations apply to decrementing a pointer, which decreases its value by the
number of bytes of its data type as shown below −
 Live Demo
#include <stdio.h>

75

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};
 int i, *ptr;

 /* let us have array address in pointer */
 ptr = &var[MAX-1];

 for (i = MAX; i > 0; i--) {

 printf("Address of var[%d] = %x\n", i-1, ptr);
 printf("Value of var[%d] = %d\n", i-1, *ptr);

 /* move to the previous location */
 ptr--;
 }

 return 0;
}
When the above code is compiled and executed, it produces the following result −
Address of var[2] = bfedbcd8
Value of var[2] = 200
Address of var[1] = bfedbcd4
Value of var[1] = 100

76

Address of var[0] = bfedbcd0
Value of var[0] = 10
 7.5.2 Pointer to Pointer
A pointer to a pointer is a form of multiple indirection, or a chain of pointers. Normally, a
pointer contains the address of a variable. When we define a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the location that contains the
actual value as shown below.

A variable that is a pointer to a pointer must be declared as such. This is done by placing an
additional asterisk in front of its name. For example, the following declaration declares a pointer
to a pointer of type int −
int **var;
 UNIT – V 8.0 File Handling
A file represents a sequence of bytes, regardless of it being a text file or a binary file. C
programming language provides access on high level functions as well as low level (OS level)

77

calls to handle file on your storage devices. This chapter will take you through the important
calls for file management.
Opening Files
You can use the fopen() function to create a new file or to open an existing file. This call will
initialize an object of the type FILE, which contains all the information necessary to control the
stream. The prototype of this function call is as follows −
FILE *fopen(const char * filename, const char * mode);
Here, filename is a string literal, which you will use to name your file, and access mode can
have one of the following values −
Sr.No. Mode & Description

1 r
Opens an existing text file for reading purpose.

2 w
Opens a text file for writing. If it does not exist, then a new file is created. Here
your program will start writing content from the beginning of the file.

3 a
Opens a text file for writing in appending mode. If it does not exist, then a new
file is created. Here your program will start appending content in the existing file
content.

4 r+
Opens a text file for both reading and writing.

5 w+
Opens a text file for both reading and writing. It first truncates the file to zero
length if it exists, otherwise creates a file if it does not exist.

78

6 a+
Opens a text file for both reading and writing. It creates the file if it does not
exist. The reading will start from the beginning but writing can only be
appended.

If you are going to handle binary files, then you will use following access modes instead of the
above mentioned ones −
"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

Closing a File
To close a file, use the fclose() function. The prototype of this function is −
int fclose(FILE *fp);
The fclose(-) function returns zero on success, or EOF if there is an error in closing the file.
This function actually flushes any data still pending in the buffer to the file, closes the file, and
releases any memory used for the file. The EOF is a constant defined in the header file stdio.h.
There are various functions provided by C standard library to read and write a file, character by
character, or in the form of a fixed length string.

Writing a File
Following is the simplest function to write individual characters to a stream −
int fputc(int c, FILE *fp);
The function fputc() writes the character value of the argument c to the output stream
referenced by fp. It returns the written character written on success otherwise EOF if there is an
error. You can use the following functions to write a null-terminated string to a stream −
int fputs(const char *s, FILE *fp);
The function fputs() writes the string s to the output stream referenced by fp. It returns a non-
negative value on success, otherwise EOF is returned in case of any error. You can use int
fprintf(FILE *fp,const char *format, ...)function as well to write a string into a file. Try the
following example.

79

Make sure you have /tmp directory available. If it is not, then before proceeding, you must
create this directory on your machine.
#include <stdio.h>

main() {
 FILE *fp;

 fp = fopen("/tmp/test.txt", "w+");
 fprintf(fp, "This is testing for fprintf...\n");
 fputs("This is testing for fputs...\n", fp);
 fclose(fp);
}
When the above code is compiled and executed, it creates a new file test.txtin /tmp directory
and writes two lines using two different functions. Let us read this file in the next section.

Reading a File
Given below is the simplest function to read a single character from a file −
int fgetc(FILE * fp);
The fgetc() function reads a character from the input file referenced by fp. The return value is
the character read, or in case of any error, it returns EOF. The following function allows to read
a string from a stream −
char *fgets(char *buf, int n, FILE *fp);
The functions fgets() reads up to n-1 characters from the input stream referenced by fp. It copies
the read string into the buffer buf, appending a null character to terminate the string.
If this function encounters a newline character '\n' or the end of the file EOF before they have
read the maximum number of characters, then it returns only the characters read up to that point
including the new line character. You can also use int fscanf(FILE *fp, const char *format,

80

...) function to read strings from a file, but it stops reading after encountering the first space
character.
#include <stdio.h>

main() {

 FILE *fp;
 char buff[255];

 fp = fopen("/tmp/test.txt", "r");
 fscanf(fp, "%s", buff);
 printf("1 : %s\n", buff);

 fgets(buff, 255, (FILE*)fp);
 printf("2: %s\n", buff);

 fgets(buff, 255, (FILE*)fp);
 printf("3: %s\n", buff);
 fclose(fp);

}

 8.1 Memory Management

The C programming language provides several functions for memory allocation and
management. These functions can be found in the <stdlib.h> header file.

81

Sr.No. Function & Description

1 void *calloc(int num, int size);
This function allocates an array of num elements each of which size in bytes will
be size.

2 void free(void *address);
This function releases a block of memory block specified by address.

3 void *malloc(int num);
This function allocates an array of num bytes and leave them uninitialized.

4 void *realloc(void *address, int newsize);
This function re-allocates memory extending it upto newsize.

8.2 Command line Arguments

It is possible to pass some values from the command line to your C programs when they are
executed. These values are called command line argumentsand many times they are important
for your program especially when you want to control your program from outside instead of
hard coding those values inside the code.
The command line arguments are handled using main() function arguments where argc refers to
the number of arguments passed, and argv[] is a pointer array which points to each argument
passed to the program. Following is a simple example which checks if there is any argument
supplied from the command line and take action accordingly −

#include <stdio.h>

82

int main(int argc, char *argv[]) {

 if(argc == 2) {
 printf("The argument supplied is %s\n", argv[1]);
 }
 else if(argc > 2) {
 printf("Too many arguments supplied.\n");
 }
 else {
 printf("One argument expected.\n");
 }
}
When the above code is compiled and executed with single argument, it produces the following
result.
$./a.out testing
The argument supplied is testing
When the above code is compiled and executed with a two arguments, it produces the following
result.
$./a.out testing1 testing2
Too many arguments supplied.
When the above code is compiled and executed without passing any argument, it produces the
following result.
$./a.out
One argument expected

83

It should be noted that argv[0] holds the name of the program itself and argv[1] is a pointer to
the first command line argument supplied, and *argv[n] is the last argument. If no arguments
are supplied, argc will be one, and if you pass one argument then argc is set at 2.
You pass all the command line arguments separated by a space, but if argument itself has a
space then you can pass such arguments by putting them inside double quotes "" or single
quotes ''.

8.3 Preprocessor Directive
The C Preprocessor is not a part of the compiler, but is a separate step in the compilation
process. In simple terms, a C Preprocessor is just a text substitution tool and it instructs the
compiler to do required pre-processing before the actual compilation. We'll refer to the C
Preprocessor as CPP.
All preprocessor commands begin with a hash symbol (#). It must be the first nonblank
character, and for readability, a preprocessor directive should begin in the first column. The
following section lists down all the important preprocessor directives −
Sr.No. Directive & Description

1 #define
Substitutes a preprocessor macro.

2 #include
Inserts a particular header from another file.

3 #undef
Undefines a preprocessor macro.

4 #ifdef
Returns true if this macro is defined.

5 #ifndef

84

Returns true if this macro is not defined.
6 #if

Tests if a compile time condition is true.
7 #else

The alternative for #if.
8 #elif

#else and #if in one statement.
9 #endif

Ends preprocessor conditional.
10 #error

Prints error message on stderr.
11 #pragma

Issues special commands to the compiler, using a standardized method.

Preprocessors Examples
Analyze the following examples to understand various directives.
#define MAX_ARRAY_LENGTH 20
This directive tells the C to replace instances of MAX_ARRAY_LENGTH with 20.
Use #define for constants to increase readability.
#include <stdio.h>
#include "myheader.h"
These directives tell the C to get stdio.h from System Libraries and add the text to the current
source file. The next line tells CPP to get myheader.hfrom the local directory and add the
content to the current source file.

85

#undef FILE_SIZE
#define FILE_SIZE 42
It tells the CPP to undefine existing FILE_SIZE and define it as 42.
#ifndef MESSAGE
 #define MESSAGE "You wish!"
#endif
It tells the C to define MESSAGE only if MESSAGE isn't already defined.
#ifdef DEBUG
 /* Your debugging statements here */
#endif
It tells the C to process the statements enclosed if DEBUG is defined.
