
1. Introduction to OOPs1. Introduction to OOPs

Dr.T.Logeswari

Introduction
• C++ is an object oriented programming languages
• Initially named ‘C with classes’, C++ was developed by Bjarne Stroustrup at AT&T Bell developed by Bjarne Stroustrup at AT&T Bell laboratories in early eighties
• C++ is the combination of object oriented feature of a languages called Simula 67 and power and elegance of C

Programming Paradigm
• Evolution of Programming Paradigm

- Procedure Oriented Programming - Procedure Oriented Programming
- Structured Oriented Programming
- Object Oriented Programming

Procedure Oriented Programming
• Procedural language

– The construction of program that are the collections of interacting function or procedure
– Ex

• Step 1: get two number
• Step 2: add these number
• Step 3: divide by 100
• Step 4: display the output
Each statement tell the computer to do something
It consist of series of steps or procedure take place

• Programmer write procedural program in many programming languages such as COBOL, Pascal, and Fortran are procedural languages, since they use procedure oriented programming approach
• A typical program consist of list of instruction to accomplish a taskto accomplish a task
• larger program are divided into number of function and then data
• In large complex multi function program , the data item may be global as well as local

Global & Local variable in procedural programming

Can be accessed only by function A
Can be accessed only by function B

• Features
– Emphasis is laid on the algorithm
– Large and complex program divided into function
– Function share global data
– Data is passed from function to function
– Top down approach is used in program design
Drawback
- If complex increase as the program grow larger and complex
- It does not model real world problems as close to user perspective as possible

Structured Programming
• It deals only with logic and code
• It suggest that well structured or organized program can be written using modularity, sequence, selection and iterationsequence, selection and iteration
• The term function used in C & C++. The other language use subroutine, subprogram or method.

Object oriented programming
• Oops took basic idea of structured programming and combined them with several new concept.
• Oops does not allow data to move freely between the function.
• It combine with both data and function that operate on • It combine with both data and function that operate on that data into a single unit called an object.
• C++ program generally consist of a number of such object which can communicate with each other through member function
• ie function belong to one object can access the function of another object

Organization of an OOP

Definition of OOPS
“Object oriented programming is aprogramming methodology that associatesdata structures with a set of operators whichact upon it.”act upon it.”
OR

An approach resulting in modular programs bycreating partitioned memory area for bothdata and function, which can be used astemplates for creating copies of such modules

Elements of OOP
• Objects
• Classes
• Encapsulation
• Data Abstraction• Data Abstraction
• Inheritance
• Polymorphism
• Dynamic Binding
• Message Passing

Objects
• OOP uses objects as its fundamental buildingblocks.
• Objects are the basic run-time entities in anobject-oriented system.
• Every object is associated with data and• Every object is associated with data andfunctions which define meaningful operationson that object.
• Object is a real world existing entity.
• Object are state or behavior
• Object is an Instance of a particular class.

Object
Operation

Attributes OperationOperation

Operation

Example: StudentObject

st_name

Enroll()

st_namest_idbranch semester
Displayinfo() Performance()

Result()

Class
• Class is a collection of similar objects.

Class

• Class = template or blueprint that describe Behavior
– A class is created with data members and member functionmember function
– Once class is defined any number of object belonging to this class can be created
Eg
Class : Shape Class : Automobile
Object : ?

Class
class class_name
{
Attributes;//Properties
Operations;//BehavioursOperations;//Behaviours
};

Class example
class student
{
char st_name[30];
char st_id[10];
char branch[10];char branch[10];
char semester[10];
Void Enroll();
Void Displayinfo();
Voide Result();
Void Performance();
};

Encapsulation
“Mechanism that associates the code and thedata it manipulates into a single unit andkeeps them safe from external interferenceand misuse.”and misuse.”

The data can only accessible only through thefunction otherwise it is hidden from user
This insulation of data from direct access by theprogram is called data hiding
Encapsulation = Data Hiding + Abstraction

Encapsulation
Class: student

Attributes: st_name, st_id, branch, semesterbranch, semester
Functions: Enroll()Displayinfo()Result()Performance()

Data Abstraction
“A data abstraction is a simplified view of an object that includes only features one is interested in while hides away the unnecessary details.”unnecessary details.”
“Data abstraction becomes an abstract data type (ADT)or a user-defined type.”

Inheritance
• “Inheritance is the mechanism to provides thepower of reusability and extendibility.”
• “Inheritance is the process by which oneobject can acquire the properties of anotherobject can acquire the properties of another

object.”

Inheritance

Point

Line

Polymorphism
• Polymorphism means that the same thing can exist in two forms.
• “Polymorphism is in short the ability to call • “Polymorphism is in short the ability to call different functions by just using one type of function call.”

Polymorphism

Dynamic Binding
“ Dynamic Binding is the process of linking ofthe code associated with a procedure call atthe run-time”.
Two typesTwo types

static binding – it will take place duringcompilation
dynamic binding – the code associated withfunction call is not known until runtime

Message Passing
“The process of invoking an operation on an object. In response to a message the corresponding method is executed in the object”.object”.

Message Passing
FacultyObjectStudentObject

Performance

MgmtObject Performance
Result

Characteristicof OOP
• Emphasis is laid on data
• Program are divided into object
• Object contain data and function that operate on the dataon the data
• Data is hidden and cannot be accessed by outside function
• Object are allowed to communicate with each other through function
• Bottom up approach is used in program design

Benefits of OOP
• Software complexity can be managed easily
• Exception checking and error handling can be implemented
• Multiple instance of an object is possible• Multiple instance of an object is possible
• Message passing techniques makes it easier to communicate with external system
• Data hiding helps programmer with data security

Object Oriented Languages
• The feature of object oriented programming languages

– Data encapsulation
– Data hiding and access mechanism– Data hiding and access mechanism
– Automatic initialization of object
– Operator overloading
– Inheritance
– Dynamic binding

Object Oriented Languages
1. Object-Oriented programming Languages

Examples: Simula, Smalltalk80, Objective C, java, C++, etc.,

Application of OOP
• Real time systems
• Object oriented databases
• AI and Expert system
• Simulation and modeling• Simulation and modeling
• Neural network
• Office automation system

Comparison of POP and OOP
POP OOP
Focus is on the function Focus is on the data
Data is not secure and can be corrupted Data is secure
Use top down programming Use bottom up programming Use top down programmingdesign Use bottom up programming design
Does not model real world problem Models real world problem
Programs are divided into function Program are divided into object

Structured Vs Object Oriented Programming
Function Oriented Object Oriented
Procedure Abstraction Procedure & Data abstraction
Does not support Supports External Interface External InterfaceExternal Interface
Free flow of Data Secured Data & not freely

flows
Also called FOP Also called OOP

2. C++ Feature

Dr.T.Logeswari

C++ Basic Elements
• Programming language is a set of rules, symbols, and special words used to construct programs. used to construct programs. There are certain elements that are common to all programming languages.

C++ Character Set
• Character set is a set of valid characters that a language can recognize.

Letters A-Z, a-z
Digits 0-9 Digits 0-9
Special Characters Space + - * / ^ \ () [] {} = != <> ‘ “ $, ; : % ! & ? _ # <= >=

@
Formatting characters backspace, horizontal tab, vertical tab, form feed, and carriage return

Tokens
• A token is a group of characters that logically belong together. The programmer can write a program by using tokens.
• C++ uses the following types of tokens. • C++ uses the following types of tokens.
• Keywords, Identifiers, Literals, Punctuators, Operators.

1. Keywords
• These are some reserved words in C++ which have predefined meaning to compiler called keywords.
• Has predefined functionality• Has predefined functionality
• C++ has 48 keywords
• Written in only in lower case

RESERVED KEYWORDS
delete boolean Break Enum
case volatile Catch Char
const continue Default Do
else asm Extern Union
float for Auto Unsignedfloat for Auto Unsigned
if inline Register Class
int template Long Double
virtual operator Signed goto
Protected public Sizeof Return
Static Struct this new
Friend Throw Typedef private
try Switch while short

2. Identifiers
• Symbolic names can be used in C++ for various data items used by a programmer in his program.
• A symbolic name is generally known as an• A symbolic name is generally known as an

identifier. The identifier is a sequence of characters taken from C++ character set.
• The rule for the formation of an identifier are:

• An identifier can consist of alphabets followed by letter and/or underscores.
• It must not start with a digit
• C++ is case sensitive that is upper case and lower case letters are considered different from each other.
• It should not be a reserved word.
• Sum, avg_ht -------- valid identifier
• 1oth std-no -----------invalid identifier

3. Literals
• Literals (often referred to as constants) are data items that never change their value during the execution of the program. The following types of literals are available in C++.following types of literals are available in C++.

– Integer-Constants
– Character-constants
– Floating-constants
– Strings-constants

Integer Constants
• Integer constants are whole number without any fractional part. C++ allows three types of integer constants.
• Decimal integer constants : It consists of sequence of digits and should not begin with 0 (zero). For example 124, - 179, +108.
• Octal integer constants: It consists of sequence of • Octal integer constants: It consists of sequence of digits starting with 0 (zero).
• For example. 014, 012.
• Hexadecimal integer constant: It consists of sequence of digits preceded by ox or OX.

Character constants
• A character constant in C++ must contain one or more characters and must be enclosed in single quotation marks. For example 'A', '9', etc.
• C++ allows non graphic characters which cannot be typed directly from keyboard, e.g.,be typed directly from keyboard, e.g.,

backspace, tab etc. These characters can be represented by using an escape sequence.
• An escape sequence represents a single character.

Floating constants
• They are also called real constants. They are numbers having fractional parts.
• They may be written in fractional form or exponent form. exponent form.
• A real constant in fractional form consists of signed or unsigned digits including a decimal point between digits.
• For example 3.0, -17.0, -0.627 etc.

String Literals
• A sequence of character enclosed within double quotes is called a string literal.
• String literal is by default (automatically) added with a special character ‘\0'added with a special character ‘\0'
• which denotes the end of the string. Therefore the size of the string is increased by one character. For example "COMPUTER" will re represented as "COMPUTER\0" in the memory and its size is 9 characters.

• Using const qualifier
ex: const int size=10;

• Using enum keyword

LITERALS (Symbolic Constants)

• Using enum keyword
ex: enum{X,Y,Z};

defines const X=0;
defines const Y=0;
defines const Z=0;

4. Punctuators
• The following characters are used as punctuators in C++. Brackets [] - Opening and closing brackets indicate single and multidimensional array subscript. Parentheses() - Opening and closing brackets indicate functions calls,; function parameters for Parentheses() - Opening and closing brackets indicate functions calls,; function parameters for grouping expressions etc.Braces { } - Opening and closing braces indicate the start and end of a compound statement.

Comma , - It is used as a separator in a function argument list.
Semicolon ; - It is used as a statement terminator.
Colon : - It indicates a labeled statement or Colon : - It indicates a labeled statement or conditional operator symbol.
Equal sign = It is used as an assignment operator.
Pound sign # It is used as pre-processor directive.

5. Operators
• Operators are special symbols used for specific purposes. C++ provides six types of operators.
• Arithmetical operators,
• Relational operators, • Relational operators,
• Logical operators,
• Unary operators,
• Assignment operators,
• Conditional operators,
• Comma operator

Structure of C++ Program

Include Files
Class DefinitionClass Definition

Class Function Definition
Main Function Program

Simple C++ Program
// Hello World program
#include <iostream.h>
int main() {

comment

Allows access to an I/O
library

int main() {
cout << "Hello World\n";
return 0;

}

output (print) a
string

Program returns a status
code (0 means OK)

Starts definition of special function
main()

Preprocessing

CompilerC++CompilerPreprocessorC++Preprocessor
Temporary file
(C++ program)

C++ Program Executable
Program

Operators

Types of operator
• Three types

– Unary – it operate on single operand
example

++ increment – - decrement :: scope++ increment – - decrement :: scope
– Binary – it operate on two operand
Example

Arithmetic, relational, logical, assignment, bitwise
– Ternary and Special Operator

Operators in C++New operators in C++ :
o << Insertion Operator
o >> Extraction Operator
o : : Scope Resolution Operator
o : : * Pointer-to-member declaration

All C operators are All C operators are valid in C++valid in C++

o : : * Pointer-to-member declaration
o ->* Pointer-to-member selection
o .* Pointer-to-member Operator
o delete Memory Release Operator
o endl Line Feed Operator
o new Memory Allocation Operator
o setw Field Width Operator

Scope Resolution Operator
C++ is a block structured language. The scope of a variable extends from the point of its declaration till the end of the block

………
………
{

int x = 10;
………
………

}the end of the block containing the declaration. A variable declared inside a block is said to be local to that block.

}
………
………
{

int x = 1;
………
………

}

Scope Resolution Operator
Blocks in C++ are often nested.
In C, the global version of a variable can not be accessed from within the

………
………
{

int x = 10;
……… Block1
………

{

continue…

accessed from within the inner block.
C++ resolved this problem with the use of the scope resolution operator (::).

{
int x = 1;
……… Block 2
………

}
………
………

}

Scope Resolution Operator
The scope resolution operator (::) can be used to uncover a hidden variable.
: : variable-name

continue…

: : variable-name
This operator allows access to the global version of a variable.

Scope Resolution Operatorcontinue…

#include<#include<iostream.hiostream.h>>#include<#include<conio.hconio.h>>intint m = 10;m = 10;void main()void main(){{ intint m = 20;m = 20;intint m = 20;m = 20;clrscrclrscr();();coutcout << "<< "m_localm_local = " << m << "= " << m << "\\n";n";coutcout << "<< "m_globalm_global = " <<::m << "= " <<::m << "\\n";n";getchgetch();();}}
m_localm_local = 20= 20
m_globalm_global = 10= 10
m_localm_local = 20= 20
m_globalm_global = 10= 10

Memory Dereferencing Operator
• C++ allow access of class member through pointer. This is achieved by following operator
: : * is used to declare a pointer to a memberof a classof a class
->* is used to declare a member using objectname and a pointer to that member
.* is used to access a member using pointerto the object and to the member

Memory Management Operators
malloc() and calloc() functions are used to allocate memory dynamically at run time.
The function free() to free dynamically the allocated memory.

C&C++allocated memory.
The unary operators new and delete perform
the task of allocating and freeing the memory.C++

Memory Management Operators
o new to create an object
o delete to destroy an object
A data object created inside a block with new,

continue…

A data object created inside a block with new, will remain in existence until it is explicitly destroyed by using delete.
Thus the life time of an object is directly under our control and is unrelated to the block structure of the program.

The data-type may be any valid data type

Memory Management Operators
o new to create an object

continue…

pointer- The new operator allocates
pointerpointer--variable = variable = newnew datadata--type;type;

pointer-variable is a pointer of type data-type

The new operator allocates sufficient memory to hold a data object of type data-type and returns the address of the object

The pointer-variable holds the address of the memory space allocated

Memory Management Operators
o pointer-variable = new data-type;
p = new int; // p is a pointer of type intq = new float; // q is a pointer of type floatHere p and q must have already been declared as

continue…

Here p and q must have already been declared as pointers of appropriate types.Alternatively, we can combine the declaration of pointers and their assignments as:int *p = new int;float *q = new float;

Memory Management Operators
int *p = new int;
float *q = new float;
*p = 25; // assign 25 to the newly created int object
*q = 7.5; // assign 7.5 to the newly created float object

continue…

*q = 7.5; // assign 7.5 to the newly created float object
pointerpointer--variable = variable = newnew datadata--type (value);type (value);
int *p = new int (25);int *p = new int (25);
float *q = new float (7.5);float *q = new float (7.5);

Memory Management Operators
new can be used to create a memory space for any data type including user-defined types such as arrays, structures and classes.

continue…

pointerpointer--variable = variable = newnew datadata--type [size];type [size];
int *p = new int [10];int *p = new int [10];int *p = new int [10];int *p = new int [10];
When creating multi-dimensional arrays with new, all the array sizes must be supplied.
array_ptr = new int[3][5][4]; //legal
array_ptr = new int[m][5][4]; //legal
array_ptr = new int[3][5][]; //illegal
array_ptr = new int[][5][4]; //illegal

Memory Management Operators
o delete to destroy an object

continue…

deletedelete pointerpointer--variable;variable;
When a data object is no longer needed, it is destroyed to release the memory space for reuse.release the memory space for reuse.delete p;delete q;
deletedelete [size] pointer[size] pointer--variable;variable;
The size specifies the number of elements in the array to be freed.delete []p; // delete the entire array pointed to by p

Memory Management Operators
If sufficient memory is not available for allocation, malloc() and new returns a null pointer.

continue…

………………p = new int;if (!p){ cout << “Allocation failed \n”;}…………

Memory Management Operators
Advantages of new over malloc():
o It automatically computes the size of the data object. No need to use sizeof operator.
o It automatically returns the correct pointer

continue…

o It automatically returns the correct pointer type. No need to use type cast.
o It is possible to initialize the object while creating the memory space.
o Like any operator, new and delete can be overloaded.

Manipulators
• C++ provide a set of function called manipulator that can be used to control the appearance of the output
• To use these manipulator the file iomanip.h • To use these manipulator the file iomanip.h must be included in program
• Manipulator can be classified into two categories
• Parameterized and non parameterized

• Parameterized manipulator contain a single argument where as non parameterized does not contain any argument
• Manipulator are always used with cout • Manipulator are always used with cout statement
• A combination of ios function and manipulator can be used in a program

Manipulators
Manipulators are operators that are used to format the data display.
Commonly used manipulators are:
o endl // causes a line feed when used in ano endl // causes a line feed when used in an

Non P // output statement
o setw // to specify field width and force the

P // data to be printed right-justified

Manipulators continue…
#include<#include<iostream.hiostream.h>>#include<#include<conio.hconio.h>>#include<#include<iomanip.hiomanip.h>>void main()void main(){{intint m, n, p;m, n, p;m = 2597;m = 2597;n = 14;n = 14;p = 175;p = 175;n = 14;n = 14;p = 175;p = 175;clrscrclrscr();();
coutcout <<<<setwsetw(10) << "First = " <<(10) << "First = " <<setwsetw(10) << m << (10) << m << endlendl<<<<setwsetw(10) << "Second = " << (10) << "Second = " << setwsetw(10) << n << (10) << n << endlendl<<<<setwsetw(10) << "Third = " << (10) << "Third = " << setwsetw(10) << p << (10) << p << endlendl;;getchgetch();();}}

First = 2597First = 2597
Second = 14Second = 14

Third = 175Third = 175
First = 2597First = 2597

Second = 14Second = 14
Third = 175Third = 175

Manipulators
We can create our own manipulators as follows:
include < iostream.h>
ostream & symbol (ostream & output)

continue…

ostream & symbol (ostream & output)
{

output << “\tRs. “;
return output;

}

Manipulators continue…
#include<iostream.h>#include<iostream.h>#include<conio.h>#include<conio.h>
ostream & symbol (ostream & output)ostream & symbol (ostream & output){{output << "Rs. ";output << "Rs. ";return output;return output;}}}}
void main()void main(){{clrscr();clrscr();
cout << symbol << "5,000/cout << symbol << "5,000/--" <<endl;" <<endl;getch();getch();}}

Type Cast Operator
C++ permit explicit type conversion of variables or expressions using the type cast operator.
o (type-name) expression // C notation
o type-name (expression) // C++ notation

// like a function call
// notation

eg:- average = sum /(float) i; // C notation
average = sum / float(i); // C++ notation

Type Cast Operator
p = int * (q); // is illegal

p = (int *) q; // is legal

continue…

The type name should be an identifier
p = (int *) q; // is legal
Alternatively, we can use typedef to create an identifier of the required type.
typedef int * int_pt;
p = int_pt (q);

Introduction
• A string is a sequence of character.
• We have used null terminated <char> arrays (C-strings or C-style strings) to store and manipulate strings.store and manipulate strings.
• ANSI C++ provides a class called string.
• We must include <string> in our program.

C++ Strings
• Supports C-String
• C++ defines a string class called string
• The string class supports several constructors. The prototypes of commonly used one isThe prototypes of commonly used one is

– string();
ex: string str("Alpha");

C++ Strings
Operator Meaning
= Assignment
+ Concatenation
+= Concatenation assignment
== Equality
!= Inequality!= Inequality
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
>> Reads
<< Prints

C++ Strings
• str2 = str1; // assigning a string
• str3 = str1 + str2; //concatenating strings
• if(str2 > str1) cout<<” str2 is bin“;//compares
• str1 = "This is a null-terminated string.\n";• str1 = "This is a null-terminated string.\n";
• cin>>str1; //reads
• Cout<<str1; //prints

Initializing string variables
• In C, a string can be a specially terminated char array or char pointer– a char array, such as char str[]=“high”; – a char pointer, such as char *p = “high”;• If a char array, the last element of the array must be equal to ‘\0’, signaling the end• For example, the above str[] is really of length 5:str[0]=‘h’ str[1]=‘i’ str[2]=‘g’ str[3]=‘h’ str[4]=‘\0’

CS 103 54

str[0]=‘h’ str[1]=‘i’ str[2]=‘g’ str[3]=‘h’ str[4]=‘\0’• The same array could’ve been declared as: – char str[5] = {‘h’,’i’, ‘g’,’h’,’\0’};• If you write char str[4] = {‘h’,’i’, ‘g’,’h’};, then str is an array of chars but not a string.• In char *p=“high”; the system allocates memory of 5 characters long, stores “high” in the first 4, and ‘\0’ in the 5th.

Declaration of strings
• The following instructions are all equivalent. They declare x to be an object of type string, and assign the string “high school” to it:

– string x(“high school”);

CS 103 55

– string x(“high school”);
– string x= “high school”;
– string x; x=“high school”;

Operations on strings(Concatenation)
• Let x and y be two strings
• To concatenate x and y, write: x+y

CS 103 56

string x= “high”;string y= “school”;string z;z=x+y;cout<<“z=“<<z<<endl;z =z+“ was fun”;cout<<“z=“<<z<<endl;

Output:z=highschool
z= highschool was fun

– Formatted Input: Stream extraction operator
• cin >> stringObject;
• the extraction operator >>>> formats the data that it receives through its input stream; it skips over whitespace

– Unformatted Input: getline function for a string
• getline(cin, s)

C ++ StringsC ++ Strings

57

• getline(cin, s)
– does not skip over whitespace
– delimited by newline
– reads an entire line of characters into s

string s = “ABCDEFG”;
getline(cin, s); //reads entire line of characters into s
char c = s[2]; //assigns ‘C’ to c
S[4] = ‘*’; //changes s to “ABCD*FG”

Getline() function
• C++ provides the function getline() to efficiently read a line of text

cin.getline(text, size)
Here text is the string variableHere text is the string variable
Size is the number of character in the string

Write() function
• It is used to display an entire line of text

cout.write(text, size)

get and getline Member Functions
• cin.get(): inputs a character from stream (even white spaces) and returns it
• cin.get(c): inputs a character from stream and stores it in cstream and stores it in c

Get() and put() function
• It is used to get() and put() single character of input and output respectively
• Char.ch;

cin=get(ch); get a character from the cin=get(ch); get a character from the keyborad and assign it to variable ch
• Char ch;

ch=cin.get(); it perform the same task of assigning the input character to ch

• The function put() is used to output a character
cout.put(ch);

Example
Char ch;Char ch;
Ch=cin.get();
Cout.put(ch);

Function in C++

Dr.T.Logeswari

INTRODUCTION
• Functions are the building blocks of C++ programs where all the program activity occurs.
• Function is a collection of declarations and • Function is a collection of declarations and statements.

C++ Functions
• “Set of program statements that can be processed independently.”
• Like in other languages, called subroutines or • Like in other languages, called subroutines or procedures.

Advantages …?
• Elimination of redundant code
• Easier debugging
• Reduction in the Size of the code
• Leads to reusability of the code• Leads to reusability of the code

Function
• The following program illustrates the use of a function : //to display general message using function #include<iostream.h> include<conio.h> void main() void main() { void disp(); //function prototype clrscr(); //clears the screen disp(); //function call getch(); //freeze the monitor }

//function definition
void disp()
{
cout<<”Welcome to II BCA”; cout<<”Welcome to II BCA”;
cout<<”Programming is nothing but logic implementation”;
}

FUNCTION DEFINITION AND DECLARATION
• The general syntax of a function definition in C++data type name_of_the_function (argument list) { //body of the function }}Here, the data type specifies the type of the value to be returned by the function. It may be any valid C++ data type. When no type is given, then the compiler returns an integer value from the function.

• Name_of_the_function is a valid C++ identifier (no reserved word allowed) defined by the user and it can be used by other functions for calling this function.
• Argument list is a comma separated list of variables of a function through which the variables of a function through which the function may receive data or send data when called from other function.
• When no parameters, the argument list is empty

//function definition add()
void add()
{
int a,b,sum;
cout<<”Enter two integers”<<endl;
cin>>a>>b; cin>>a>>b;
sum=a+b;
cout<<”\nThe sum of two numbers is “<<sum<<endl;

}

• The above function add () can also be coded with the help of arguments of parameters as shown below:
//function definition add()
void add(int a, int b) //variable names are must in definition
{ {

int sum;
sum=a+b;
cout<<”\nThe sum of two numbers is “<<sum<<endl;
}

Calling a function
• A function can be called by specifying its name, followed by a list of arguments enclosed in parentheses
• The argument may be separated by commas• The argument may be separated by commas
• Syntax

variable = function_name(argument list);
or

function_name(argument-list);

float cubeRoot(float); // Function prototypevoid main(){ float a,b;clrscr();cout<<“/n type a number to find cube root:”;cin>>a;cout<<“/n cube root of”<<a<<“is”<<cubeRoot(a);cout<<“/n cube root of”<<a<<“is”<<cubeRoot(a);} Float cubeRoot(float x){ return(pow(x,(1.0/3.0))); //return(exp(1.0/3.0*log(x)))}

ARGUMENTS TO A FUNCTION
• Arguments(s) of a function is (are) the data that the function receives when called/invoked from another function.

Passing Constant
• Consider a function that will print any character any number of times
• The calling program supplies constant argument, such as ‘*’ and 50 to the function
• The variable used within the function to hold the • The variable used within the function to hold the argument values are called parameter
• In line() they are ch and len
• When the function is called its parameter are automatically initialized to the value passed by calling function

Void line(char, int); // function declarationVoid main(){Clrscr();line(‘*’,50);Line(‘!’,50);Line(‘-’,40);Getch();}//function to draw a line

Program to illustrate function with constant argument

//function to draw a lineVoid line(char ch, int len){For(int i=1;i<=len;i++)cout<<ch;Cout<<endl;}

Output********************!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!-------------------------------

Passing variables
• The previous program passing constant now here passing variables as argumentsVoid line(char, int); // function declarationVoid main(){Char ch1;Int len;Int len;Clrscr();Cout<<“enter a character:”;Cin>>ch1;Cout<<“enter the number of times to repeat:”;Cin>>len;Getch();}

// function to draw lineVoid line(char ch, int n){for(int i=1;i<=n;i++){Cout<<ch;Cout<<endl;

Ch1 and len in main() are usedas arguments to line()

Cout<<endl;}OutputEnter a character:@Enter no of times to repeat:10@@@@@@@@@@

Actual Arguments
• The arguments appearing in the function call are known as actual arguments
• It may be constant, variable or an expression
• In function call:• In function call:

Result = mul(a,b); a and b are the actual arguments
The actual arguments must have some value stored in function call
Ex : a=10; b=5;

result = mul(a,b); or Cin>>a>>b;Result = mul(a,b);

Formal parameter
• The argument that appear in the function header are referred to as formal parameter
• It get their values from the calling function

CALLING FUNCTIONS
• In C++ programs, functions with arguments can be invoked by : (a) Value(b) Reference Call by Value: Call by Value: In this method the values of the actual parameters (appearing in the function call) are copied into the formal parameters (appearing in the function definition), i.e., the function creates its own copy of argument values and operates on them

Difference
Pass by value Pass by reference
Calling function send copies of data Calling
The formal parameter are ordinary variable The formal parameter are pointer variablesordinary variable pointer variables
Result are send calling function through return mechanism(one)

Several result can sent back to calling function
Actual parameter are unaffected by changes made within the function

Direct changes made to the actual parameter

Pass by reference with reference argument
• When parameter passed by reference, the formal parameter become aliases to the actual parameter in the calling functionVoid swap(int &, Int &);Void main() This mechanism only available in c++Void main(){}Void swap(int &a, int &b){}

This mechanism only available in c++It permit the manipulation of objectBy reference and eliminate copyingOf parameter from calling functionTo called function

Comparison
Reference argument Pointer Arguments
A reference variable is always be initialized. Once initialized it cannot be made refer to another object

A pointer can point to different object
another object
A reference argument is prefixed with an ampersand(&) symbol

A pointer argument is prefixed with asterisk(*) symbol
It can be used to implement overloaded operator It is not used to implement overloaded operator

Passing array to function
• Constant and variable are passed to the function as argument
• Sometime the entire array of function should pass
• It is not possible to pass a block of memory to the • It is not possible to pass a block of memory to the function. Instead a reference(address) of the first element of the array can be passed to the function
• The array element are stored in contiguous memory location, reference to the first element gives access to all the element of the array

• C++ convert array declaration in the formal parameter of a function, into an array pointer, the size of the array need not be specified
• Program –: rev - string passes two character array str[] and rev[]void reverse(char s[], char r[]);Void main(){ Getline() function is {Char str[50], rev[50];Clrscr();Cout<<enter a string;Cin.getline(str,50);Cout<<the original string<<strReverse(str, rev);

Getline() function is used to read a line of textSyntax:Cin.getline(text,size);

Cout<<reverse string<<rev;
}
Void reverse(char s[], char[])
{
Int len = strlen(s);
For(int i=0; i<len;i++)For(int i=0; i<len;i++)
r[i]=s[len-i-1];
r[i]=‘\0’;
}
The array are passed to function using pass by value

Passing & returning structure variable
• Passing structure to function works like pass by value ie the function works with copy of the structure.
• The function can also return the structure. To • The function can also return the structure. To pass the address of the structure. The address operator(&) must be used

Struct clock{Int hr;Int min;};Clock sumtime(clock t1, clock t2);Void showsum(clock t);Void main(){{Clock t3;Clock t1={5,50};Clock t2={3,45};Clrscr();t3=sumtime(t1,t2);Cout<<first clock time;Showsum(t1)

Cout<<second clock;Showsum(t2);Cout<<third clock;Showsum(t3);getch();}Clock sumtime(clock t1, clock t2){{Clock total;total.min= (t1.min+t2.min)%60;total.hr=(t1.hr+t2.hr)+(t1.min+t2.min)/60;return total;}

Void showsum(clock t)
{
Cout<<t.hr<<“hour”<<t.min<<“minutes”;
}
Output
First clock time : 5 hours, 50 minutesFirst clock time : 5 hours, 50 minutes
Second clock time: 3 hours, 45 minutes
Sum of two clock: 9 hours, 35 minutes

DEFAULT ARGUMENTS
• C++ allows a function to assign a parameter the default value in case no argument for that parameter is specified in the function call.
• Default values are assigned in function • Default values are assigned in function declaration(prototype). Example
float si(float amount, int period, float rate= 1.10)

#include<iostream.h> int calc(int U) { If (U % 2 = = 0) return U+10; Else return U+2 } Void pattern (char M, int B=2) { for (int CNT=0;CNT<B; CNT++) cout<calc(CNT) <<M; cout<calc(CNT) <<M; cout<<endl; } Void main () { Pattern(‘*’); Pattern (‘#’,4)’ Pattern (;@;,3); }

CONSTANT ARGUMENTS
• A C++ function may have constant arguments(s). These arguments(s) is/are treated as constant(s). These values cannot be modified by the function.
• For making the arguments(s) constant to a function, we should use the keyword const as given below in the function prototype :
• Void max(const float x, const float y, const float z);

• Here, the qualifier const informs the compiler that the arguments(s) having const should not be modified by the function max (). These are quite useful when call by reference method is quite useful when call by reference method is used for passing arguments.

Return statement
• This statement is normally used to send back values from the sub program or function to the calling function or main program
• A function can return only one value or none, for every function callfunction call
• General form

Return 0;
Or

Return(expression)
• It is not compulsory in a function most function use it, either to stop execution or return a value to the calling function
• A function can have several return statement

Return by reference
• A function can be called by reference or return a reference
• When a function return a reference to a data object, the object must be existing even after object, the object must be existing even after the function terminates.
• To implement this function return a reference to an argument that passed to it

float& maxi(float, float, float float&);Void main(){float main(){float x,y,z large;clrscr();Cout<<type 3 no;Cin>>x>>y>>z;Maxi(x,y,z,large);Maxi(x,y,z,large);Cout<<“given value of x y and z”;Cout<<“x=x”<<x;Cout<<“y=y”<<y;Cout<<“z=z”<<z;Cout<<“largest is”<<large;getch();}

float& maxi(float a, float b, float c, float& big)
{
big=a;
If (b>big) big =b;
If(c>big) big = c;
return big;
}
output

Recursive function
• Recursive in a process by which a function call itself repeatedly until some condition is satisfied
• The process is used for repeated calculation, where each action in terms of a previous resultfun(int x)fun(int x){….….y=fun(x);…}

• To write a recursive function, two condition must be satisfied
– The program must be in recursive form
– It must include a terminating condition
EgEg
n! = n * (n -1) !

Function overloading
• In c++ polymorphism (poly means many and morp means form) is implemented using

– Operator overloading
– Function overloading

• Overloading refer to the capability of using a • Overloading refer to the capability of using a single name for several different task
• The function overloading the same name is used for many function which vary in their list of argument and data types and perform difference action

Inline Functions
“ Inline functions are those whose function body isinserted in place of the function call statementduring the compilation process.”

Syntax:• Syntax:
inline return_dt func_name(formal parameters)
{

function body
}

Inline Functions
• Frequently executed interface functions.
• Expanding function calls inline can producefaster run times.faster run times.
• Like the register specifier, inline is actually just a request, not a command, to the compiler.

• The inlining does not work for the following situations :
1. For functions returning values and having a loop or a switch or a goto statement.
2. For functions that do not return value and

having a return statement. having a return statement.
3. For functions having static variable(s).
4. If the inline functions are recursive (i.e. a

function defined in terms of itself).

4. Classes & Objects

Introduction
• The New C++ Headers(New style)

#include<iostream>
using namespace std;

• The old style Headers
#include<iostream.h>

The New C++ Headers
• A namespace is simply a declarative region.
• The purpose of a namespace is to localize the names of identifiers to avoid name collisions.names of identifiers to avoid name collisions.
• iostream, math, string, fstream etc., forms the contents of the namespace called std.

Class Specification
• Syntax:class class_name{

Data members

};
Members functions

Class Specification
• class Student

{
int st_id;
char st_name[]; Data Members or Properties of

Student Classchar st_name[];
void read_data();
void print_data();

};

Student Class

Members Functions or
Behaviours of Student Class

Class Specification
• Visibility of Data members & Member functions

public - accessed by member functions and all
other non-member functions in the
program.

private - accessed by only member functions of theprivate - accessed by only member functions of the
class.

protected - similar to private, but accessed by
all the member functions of
immediate derived class

default - all items defined in the class are private.

Class specification
• class Student

{
int st_id;
char st_name[];char st_name[];
void read_data();
void print_data();

};

private / default
visibility

Class specification
• class Student

{
public:

int st_id;int st_id;
char st_name[];

public:
void read_data();
void print_data();

};

public visibility

Class Objects
• Object Instantiation:

The process of creating object of the type class
• Syntax:

class_name obj_name;class_name obj_name;
ex: Student st;

St_id, St_name
void read_data()
void print_data()

Class Object
• More of Objects

ex: Student st1;
Student st2;
Student st3;Student st3;

Class Objects
10,Rama

void read_data()
void print_data()

20, Stephen
void read_data()
void print_data()

st1 st2
55, Mary

void read_data()
void print_data()

st3

Accessing Data Members
(outside the class)

• Syntax: (single object)
obj_name . datamember;
ex: st.st_id;ex: st.st_id;

• Syntax:(array of objects)
obj_name[i] . datamember;
ex: st[i].st_id;

Accessing Data Members
(inside the class member function)

• Syntax: (single object)
data_member;

ex: st_id;
• Syntax:(array of objects)

data_member;
ex: st_id;

Defining Member Functions
• Syntax :(Inside the class definition)

ret_type fun_name(formal parameters)
{

function bodyfunction body
}

Defining Member Functions
• Syntax:(Outside the class definition)

ret_type class_name::fun_name(formal parameters)
{

function bodyfunction body
}

Nesting of member Function
• A member function of class can be called in two ways

– Called by an object of that class using the dot operatoroperator
– Called inside of the another member function of the class

• when a member function Called inside of the another member function of the same class it is known as nesting of member function

Class large
{
Private:

int m,n;
Public:

int getdata();
void putdata();
Void findlarge();Void findlarge();

};
Void large::getdata()
{

cout<<“enter two integer”;
cin>>m>>n;

}

Int large :: findlarge()
{

If(m>n)
return (m);
else
return(n);return(n);

}
Void large :: putdata()
{

Cout<<“given number”<<“m<<“n<<endl;
Cout<<“largest<<“findlarge();

Void main()
{

clrscr();
large x;
x.getdata();
x.putdata();

Output
Enter two integer : 50 100
Largest :100

x.putdata();
getch();

}

Arrays as class members
• The data member of a class can be array.
• Example to store marks obtained by a student in 5 different subject

const int size=10;class studentclass student{int roll; int marks [m]; char name[20];public:void getdata(); void calsum();void displayAll(void);};

const int size=5;
class student{

private:int roll; int marks [m]; char name[20];public:void getdata(); void calsum();void displayAll(void);};};
Void student :: getdata()
{
Cout<<“enter roll number”;
Cin>>roll;
Cout<<“enter the name:”;
Cin>>name

Cout<<“enter marks”<<m<<“subject”;
for(int i=1;i<=m;i++)
Cin>>marks[i];
}
Int student ::calsum()
{{
Int total =0;
for(int i=1;i<=m;i++)
total = total +marks[i];
return(total);
}

Void student :: dispalyAll()
{
Cout<<“roll no”<<roll;
Cout<<“name”<<name;
Cout<<“marks”;
for(int i=1;i<=m;i++)
Cout<<marks[i]<<setw(5);

Enter roll no : 1
Enter name : banu
Enter marks in 5 subject : 20 20 40 50 10
Roll no :1
Name : banu
Marks: 20 20 40 50 10
Total : 140

Cout<<marks[i]<<setw(5);
Cout<<“total”<<calsum();
}
Void main()
{
Student s;
s.getdata();
s.displayAll();
}

Array of object
• Array can be any data type, it is legal to have arrays of variable that are of type class
• Such arrays are called arrays of object
Class itemClass item
{
Private:
Int code; char name[20]; float rate;
Public:
Void getdata(); void print data();
};

• Item is the user defined type. It is used to create array of object such as
item pc[3];

• Item printer[10];
• Individual element of the array can be accessed by the usual array accessing methods and by the usual array accessing methods and member function can be accessed by using dot member operator

– Eg pc[1].printdata();

Class item
{
Private:
Int code;
Char name[25];
Float rate;
Public:
Void getdata()
{
Cout<<“enter item name”,
Cin>>name;
Cout<<“enter item code”;
Cin>>code;
Cout<<“enter item price”;
Cin>>rate;

Void print data();
{
Cout<<“item code”<<code;
Cout<<“item name”<<name;
Cout<<item rate”<<rate;
}}
};
Const int size =3;
Void main()
{
Item pc[size];

for(int i=0;i<size;i++)
pc[i].getdata();
Cout<<“details of pc”;
for(i=0;i<size;i++)
pc[i].printdata();
getch();

Output

getch();
}

Passing Objects as Arguments
• Passing of parameter as object can be done in two ways
• Objects are passed to functions through the • Objects are passed to functions through the use of the standard call-by-value mechanism.
• Means that a copy of an object is made when it is passed to a function.

– Call by value
– A copy of the entire object is passed to the function.
– This method is known as pass by value.value.
– Any changes made to the object inside the function, do not affect the object used to call the function

• Pass by reference
• It is similar to call by reference can be used.
• In this method only address of the object is passed to the called object is passed to the called function, so any changes made to the object inside the function are reflected in the actual object.

Passing Objects as Arguments
class complex
{

……
void main(){

……
.…..

void Add(int x, complex c);
……
……

};

complex obj, s1;………………obj.Add(6, s1) ;…………}

Returning Objects
• A function may return an object to the caller.
class complex
{

……
void main(){

……
.…..

complex Add(int x, complex c);
……
……

};

complex obj, s1;………………obj=obj.Add(6, s1) ;…………}

Returning object from function
• This is like normal function, a function can return object too.
Class complex
{

float real;
float imag;

Public:
Void readdata()
{
Cout<<“enter the real part”;
Cin>>real;
Cout<<“enter the imaginary part”;
Cin>>img;
}

Void printdata()
{
Cout<<“real part”<<real<<endl;
Cout<<“imaginary part”<<imag<<endl;
}
Complex sum(complex c2) //temp variable to hold sum of two number
{{
Complex temp;
temp.real = real +c2.real;
temp.imag= imag+c2.imag;
return(temp);
}
};

Void main()
{
Clrscr():
Complex c1, c2, c3;
C1.readdata();
C2.readdata();C2.readdata();
c3=c1.sum(c2);
Cout<<“the first complex number”;c1.printdata();
Cout<<“the secocnd complex number”;c2.printdata();
Cout<<“ Sum of two complex number”;c3.printdata();
}

Assigning object
• An object can be assigned to another object, only if both object are of same type
• On assignment, the data member of the object will be copied into the corresponding object will be copied into the corresponding member of the other object

Object Assignment

20, Shilpa 20, Shilpa

Only If Instances of samevoid read_data()

void print_data()

emp1

void read_data()

void print_data()

emp2

sameClass!!

Class complex
{

float real;
float imag;

Public:
Void input complex()
{
Cout<<“type real part”;
Cin>>real;
Cout<<“type the imaginary part”;
Cin>>img;
}

Void outputcomplex()
{
Cout<<“real part”<<real<<endl;
Cout<<“imaginary part”<<imag<<endl;
}
};
Void main()
{
Clrscr();Clrscr();
Complex c1,c2;
Cout<<“input first complex number”<endl
C1.inputcomplex();
Cout<<“first complex number”;c1.outputcomplex();
C2=c1;
Cout<<“second complex number”;c2.outputcomplex();
}

Memory allocation for object
• When memory function is defined, it is created and placed in memory.
• When an object is created only the space is allocated for the member variableallocated for the member variable
• So object of the class use same member function , no separate space is allocated for the member function during creation of object
• So data is therefore placed in memory whenever each object is defined

Static class member
• In a class, both member variable and function can be declared as static
• A static data member of a class is similar to static variable in c but with following static variable in c but with following characteristics

– It is like a global variable in for its class, available to all object of that class
– When the first object of its class is created it is initialized to zero automatically

• When a static data member is declared as private, the non member function cannot access it.
• Declaration

Class info
{{
Static int count; // declaration within class
……
…….
};

• Defined outside the class
Int info:: count; // definition outside the class named info

• A static variable can be initialized with any value at the time of its definition outside the classclass
Int info :: count = 15;

Static Data Members
• Static data members of a class are also known as "class variables“.
• Because their content does not depend on • Because their content does not depend on any object.
• They have only one unique value for all the objects of that same class.

Static Data Members
• Tells the compiler that only one copy of the variable will exist and all objects of the class will share that variable.
• Static variables are initialized to zero before the first object is created.
• Static members have the same properties as global variables but they enjoy class scope.

Static Data Member
10, John

void read_data()
void print_data()

20, Shilpa
void read_data()
void print_data()

emp1 emp2
55, Mohn

void read_data()
void print_data()

emp3

static int emp_seq;

Static Member Functions
• Member functions that are declared with static specifier.

Synatax:Synatax:class class_name{ public: static ret_dt fun_name(formal parameters); };

Static Member Functions
Special features:
• They can directly refer to static members of the class.
• They does not have this pointer.• They does not have this pointer.
• They cannot be a static and a non-static version of the same function.
• The may not be virtual.
• Finally, they cannot be declared as const or volatile.

Local Classes in C++
A class declared inside a function becomes local to thatfunction and is called Local Class in C++.
For example, in the following program, Test is a localclass in fun().void fun()void fun(){ class Test // local to fun{ /* members of Test class */};}

Local Classes
“A class defined within a function is called Local Class.” void fun(){ class myclass {int i;

Syntax:void function(){ int i;public:void put_i(int n) { i=n; }int get_i() { return i; }} ob;ob.put_i(10);cout << ob.get_i();}

{ class class_name{ // class definition} obj;//function body}

Characteristic of local classes
• When a class is declared within a function, it is known only to the function and therefore becomes a local class
• Global variables must be accessed using the • Global variables must be accessed using the scope resolution operator(::)
• Static variable must not be declared within a local class

Multiple Classes
Synatax:
class class_name1
{
//class definition

Example: class student { int st_id;test m;public:

Example: class test { public:int t[3];//class definition
};
class class_name2
{
//class definition
};

public:viod init_test(){m.t[0]=25;m.t[1]=22;m.t[2]=24;}};

int t[3];};

Nested Class
• One class can be defined another class. This created a nested class.
• It is valid only within the scope of the enclosing classenclosing class

Nested ClassesSyntax:
class outer_class
{
//class definition

class inner_class

Example: class student { int st_id;public:class dob{ public:int dd,mm,yy;class inner_class
{

//class definition
};

};

{ public:int dd,mm,yy;}dt;void read(){ dt.dd=25;dt.mm=2;dt.yy=1988;}};

Global Classes in C++
A class declared outside the body of all the function in aprogram is called Global Class in C++.For exampleclass sample{ int x; public: void readx() { cin>>x;} };void main()void main(){sample s1;s1.readx();}

Local and Global Objects in C++
A class declared outside the body of all the function in aprogram is called Global Class in C++.For exampleclass sample{ int x; public: void readx() { cin>>x;} };sample s1; // Global Objectsample s1; // Global Objectvoid main(){sample s2; // Local Objects1.readx();}

Chapter 5Constructors & DestructorsConstructors & Destructors

Class
• A class consists of:

–
–

member data (usually private)
member functions (usually public)
• the simplest class shall have at least• the simplest class shall have at leastfunctions:
– set data
– show data

two member

– member data can be public, and memberfunctions can be private

Member data initialization
• After an object is created:

– Standard ways for data initialization:
• Setting default constants•
•
•

Setting default constants
Reading input from user (using cin >>)
...

Member data initialization
class circle{private:int xC, yC, radius ;public:void set (int x, int y, int r)

- example

xC = x; yC = y; radius = r;{ xC = x; yC = y; radius = r;
void get (){ cout << “\Enter x coordinate: “ ;cin >> xC;cout << “\Enter y coordinate: “ ; cin>> yC;cout << “\Enter radius : “ ; cin >>radius;}
void draw ()
{draw_circle(xC, yC, radius);
}

}

int main()
{...circle c1, c2; c1.set (15, 17, 8); c2.get (); c1.draw(); c2.draw()c2.draw()
...}

Constructors
• “A constructor function is a special functionthat is a member of a class and has the samename as that class, used to create, andinitialize objects of the class.”initialize objects of the class.”
• Constructor function do not have return type.
• Should be declared in public section.

Constructors
Example:
class student
{ int st_id;

public:

Synatax:class class_name{ public: class_name(); public:
student()
{

st_id=0;
}

};

class_name(); };

Constructors
• How to call this special function…?

int main()
class student
{

int st_id;int main()
{

student st;
…………
…………

};

int st_id;
public:

student()
{

st_id=0;
}

};

Constructors
• Pgm to create a class Addition to add two integer values. Use constructor to initialize values.
• Pgm to create a class Circle to compute its • Pgm to create a class Circle to compute its area. Use constructor to initialize the data members.

Constructor -
class circle{

private:
int xC, yC, radius ;
public:
circle()
{
xC = 25 ; yC = 25 ; radius = 5;
}
void set (int x, int y, int r)
{

example

{
xC = x; yC = y; radius = r;

}
void get ()

{ cout << “\Enter x coordinate: “ ; cin>> xC;cout << “\Enter y coordinate: “ ; cin >> yC;
cout << “\Enter radius : “ ; cin >> radius;
}
void draw ()
{
draw_circle(xC, yC, radius);
}

}

int main() {...
circle c1, c2; c1.set (15, 17, 8); c1.draw(); c2.draw()...}

Types of Constructors
• Parameterized constructors
• Constructor without default argument
• Overloaded constructors
• Constructors with default argument• Constructors with default argument
• Copy constructors
• Dynamic constructors

• C++ allows, passing of argument/ parameter to the constructor at the time of creating the object.
• A constructor with one or more arguments is known as parameterized constructor

Parameterized Constructors
class Addition{ int num1;int num2;int res;int res;public:Addition(int a, int b); // constructorvoid add();void print();};

Default Constructor
• A constructor which does not accept parameter is called default constructorClass sample{ ….….public:sample(){} // Constructor with no argument……};

Calling constructor implicitly or explicitly
• In a class where a constructor has been parameterized, the object declaration must pass initial values as arguments to the constructor function. This can be done byconstructor function. This can be done by

– Calling the constructor implicitly
– Calling the function explicitly

Class point{Int x,y;Public:point(int a, int b);….…..};};Point ::point(int a, int b){ x=a; y=b;}

In the main program object can be created by calling the constructor implicitly as
point p1 (10,20); // implicit call

Where x is initialized to 10 and y =20
The second method of creating object by calling the constructor explicitly ascalling the constructor explicitly as

point p1=p1(10,20);

Constructor overloading
When more than one constructor function is defined in a Class is known as Constructor Overloading
Overloaded constructors shall have different parameter Lists
– circle();– circle();
– circle (int x, int y, int r);

The reason for using overloading constructorTo get flexibilityto define copy constructorTo support array

Overloaded Constructors
class Addition
{

int num1,num2,res;
float num3, num4, f_res;
public:public:
Addition(int a, int b); // int constructor
Addition(float m, float n); //float constructor
void add_int();
void add_float();
void print();

};

Constructor with default arguments
• Similar to function with default arguments constructor too can be defined with default arguments.
• In fact overloading of a constructor can be avoided in many cases, by using default argumentsarguments
• The same rules for function with default arguments apply to constructor i.e default values must be added from right to left
• Default values cannot be provided to an argument in the middle of an arguments

Constructors with Default Argument
class Addition{ int num1;int num2;int res;int res;public:Addition(int a, int b=0); // constructorvoid add();void print();};

Copy Constructor
• It is a special case of constructor, used to make a copy of one class object and initialize it by using another class object of the same class type
• Format
Classname (classname & obj)Classname (classname & obj)
{
//body of constructor
}
Obj is a reference to an existing object. The copy constructor normally takes one argument which is an object type class name

Copy Constructor
class code{ int id;public:code() //constructorcode() //constructor{ id=100;}code(code &obj) // constructor{id=obj.id;}};

Class sample
{
Private:

Int m,n;
Public:

sample(){} // Default constructor
sample(int a, int b)

{
m=a; n=b; // Construtor 1m=a; n=b; // Construtor 1

}
sample() {
m=0;n=0; } // Constructor 2

sample (sample& s1)
{

m=s1.m; n=s1.n; // Copy constructor copy the value
}
………..
};

Dynamic constructor
• When memory is allocated to object at the time of their creation, it is known as dynamic construction of the object
• Such object can be created with the help of the new operatorthe new operator
• Dynamic constructor are used to allocate memory for creating such object
• This result in allocation of right amount of memory and thus result in saving of memory

Dynamic Constructors
class Sum_Array{ int *p;public:public:Sum_Array(int sz) // constructor{p=new int[sz];}};

String Manipulation using Constructor
• Operation on strings can be manipulated in C++ by defining a string class and creating string object
• The operation such as concatenation, • The operation such as concatenation, comparison, length of a string etc can be performed on the object

Destructors
• A destructor is a special member function of a class which is called automatically by the compiler to automatically by the compiler to destroy the object created by the constructor

Destructors characteristic
• “A destructor function is a special functionthat is a member of a class and has the samename as that class used to destroy theobjects.”
• Must be declared in public section.• Must be declared in public section.
• Destructor do not have arguments & returntype.

Syntax
• The general format is

~sample() { } // destructor for the
constructor sample()

Destructors
Synatax:class class_name{ public: ~class_name();

Example: class student { public:~student()~class_name(); };
~student(){ cout<<“Destructor”;}};

Template

Dr.T.Logeswari

Polymorphism in C++

Dr.T.Logeswari

Polymorphism in C++
• The process of representing one Form in multiple forms is known as Polymorphism. Here one form represent original form or original method always resides in base class and multiple forms represents overridden method which resides in represents overridden method which resides in derived classes.
• Polymorphism is derived from 2 greekwords: poly and morphs. The word "poly" means many and morphs means forms. So polymorphism means many forms.

Real life example of Polymorphism in C++
• Suppose if you are in class room that time you behave like a student, when you are in market at that time you behave like a customer, when you at your home at that time you behave like you at your home at that time you behave like a son or daughter, Here one person have different-different behaviors.

Type of polymorphism
• Compile time polymorphism
• Run time polymorphism

Compile time polymorphism
• In C++ programming you can achieve compile time polymorphism in two way, which is given below;

– Method overloading
– Method overriding– Method overriding

• Method Overloading in C++
• Whenever same method name is exiting multiple times in the same class with different number of parameter or different order of parameters or different types of parameters is known as method overloading

• In below example method "sum()" is present in Addition class with same name but with different signature or arguments.

Example of Method Overloading in C++
#include<iostream.h>#include<conio.h>class Addition{ public: void sum(int a, int b)void sum(int a, int b){ cout<<a+b;} void sum(int a, int b, int c){ cout<<a+b+c; }};

void main()
{
clrscr();
Addition obj;
obj.sum(10, 20);
cout<<endl;
obj.sum(10, 20, 30); obj.sum(10, 20, 30);
}
Output
30
60

Method Overriding in C++
• Define any method in both base class and derived class with same name, same parameters or signature, this concept is known as method overriding.known as method overriding.
• In below example same method "show()" is present in both base and derived class with same name and signature.

Example of Method Overriding in C++
#include<iostream.h> #include<conio.h> class Base{ public: void show(){cout<<"Base class"; cout<<"Base class"; }};class Derived:public Base{public: void show(){ cout<<"Derived Class"; } }

int main()
{
Base b; //Base class object
Derived d; //Derived class object
b.show(); //Early Binding Occurs
d.show();
getch();getch();
}
Output
Base class
Derived Class

Run time polymorphism
• In C++ Run time polymorphism can be achieve by using virtual function.
• A virtual function is a member function of class that is declared within a base class and re-defined in derived class.
• When you want to use same function name in both the base and derived class, then the function in base class is declared as virtual by using the virtual keyword and again re-defined this function in derived class without using virtual keyword.

Syntax
Virtual return_type function_name()
{
.......
.......
}

Virtual Function Example
#include<iostream.h>
#include<conio.h>
class A
{{
public:
virtual void show()
{
cout<<"Hello base class";
}
};

class B : public A
{
public: void show()
{
cout<<"Hello derive class";
} }
};
void main()
{
clrscr();
A aobj;
B bobj;

A *bptr;
bptr=&aobj;
bptr->show(); // call base class function bptr=&bobj;
bptr->show(); // call derive class function getch();getch();
}
Output
Hello base class
Hello derive class

Pure Virtual Functions
• Pure virtual Functions are virtual functions with no definition.
• They start with virtual keyword and ends with= 0. with= 0.
• Here is the syntax for a pure virtual function
Virtual return_type function_name(arg_list)=0
Eg:
virtual void f() = 0;

Abstract Class
Abstract Class is a class which contains at least one Pure Virtual function in it.

Abstract classes are used to provide an Interface for its sub classes.for its sub classes.
Classes inheriting an Abstract Class must provide definition to the pure virtual function, otherwise they will also become abstract class.

Characteristics of Abstract Class
• Abstract class cannot be instantiated, but pointers and refrences of Abstract class type can be created.
• Abstract class can have normal functions and variables along with a pure virtual function.variables along with a pure virtual function.
• Abstract classes are mainly used for Upcasting, so that its derived classes can use its interface.
• Classes inheriting an Abstract Class must implement all pure virtual functions, or else they will become Abstract too.

Example of Abstract Classclass Base //Abstract base class
{
public:
virtual void show() = 0; //Pure Virtual Function };
class Derived:public Baseclass Derived:public Base
{
public: void show()
{
cout << "Implementation of Virtual Function in Derived class"; } };

int main()
{
Base obj; //Compile Time Error
Base *b;
Derived d;
b = &d;b = &d;
b->show();
}
Output :
Implementation of Virtual Function in Derived class

Virtual Base Class
• Some situation we need to use all three kinds of inheritance: multilevel, multiple and hierarchical Parent

GrandChild

Child 1 Child 2

• The grand child inherit the qualities of parent through two separate paths
– Parent, child1, grandchild
– Parent, child2, grandchild

Streams

Dr.T.Logeswari

Introduction
• In C++ I/O system operates through streams.
• I/O system provides a level of abstractionbetween the programmer and the device. between the programmer and the device.
• This abstraction is called a stream and the actual device is called a file.

Introduction
• A stream is a logical device that either produces or consumes information.
• A stream is linked to a physical device by the • A stream is linked to a physical device by the I/O system.
• Standard C++ provides support for its I/O system in <iostream.h>

Input device

Program

Input Streams
C++ Streams

Extracts fromInput stream
I

OutputDevice

Program

Output Streams InsertsIntooutput stream

I/O Stream Classes for console Operations

streambuf ostreamistream
ios

filebuf

pointer

iostream

ostream_withassignistream_withassign
iostream_withassign

filebuf

C++'s Predefined Streams
When a C++ program begins execution, Two built-in streams are automatically opened.

Stream Meaning Default Device
cin Standard input Keyboard
cout Standard output Screen

Unformatted I/O
• Input operator
• Output operator
• Overloading I/O Operator

Input Operator
• Extraction operator:(>>)
• float var;

cin >>var;
char line[20];char line[20];

cin>>line;
• get(), getline(),read()

Output Operator
• Insertion Operator:(<<)
• float var;

char line[20];
cout<< var<<line;cout<< var<<line;

• put(),putline(),write()

Formatted I/O
• There are three related but conceptuallydifferent ways that we can format data.

- directly accessing members of the ios class.- directly accessing members of the ios class.
- using special functions called manipulators.
- user defined output functions

Formatting Using the ios Members
• The ios class declares a bitmask enumeration called fmtflags in which the following set of format flags are defined.
• To set a flag, the setf() function is used. This function is a member of ios.
• Syntax: fmtflags setf(fmtflags flags);

example: stream.setf(ios::showpos);

Flag Meaning
skipws leading white-space characters are discarded when performing input on a stream
left output is left justified.
right output is right justified. Default is right justified.
internal a numeric value is padded to fill a field byinserting spaces between any sign or base character.inserting spaces between any sign or base character.
oct flag causes output to be displayed in octal.
hex flag causes output to be displayed in hexadecimal.
dec flag causes output to be displayed in decimal. Default is decimal output.
showbase Shows the base of numeric values

Flag Meaning
showpos causes a leading plus sign to be displayed before positive values.
scientific floating-point numeric values are displayed using scientific notation. By default, when scientific notation is displayed, the e is in lowercase.
uppercase characters are displayed in uppercase.
showpoint causes a decimal point and trailing zeros to be displayed for all floating-point outputshowpoint causes a decimal point and trailing zeros to be displayed for all floating-point output
fixed floating-point values are displayed using normal notation.
unitbuf the buffer is flushed after each insertion operation.
boolalpha Booleans can be input or output using the keywords true and false.

Function Meaning
width() To specify required field size for displaying an output value.
precision() To specify the number of digits to displayed after the decimal point of a float value value.
fill() To specify a character to used to fill the unused portion of a field.of a field.
setf() Sets the format flags
unsetf() Un-Sets the format flags

Manipulators Meaning
boolalpha Turns on boolapha flag.
dec Turns on dec flag.
endl Output a newline character and flush the stream.
ends Output a null.

Using Manipulators to Format I/O

ends Output a null.
fixed Turns on fixed flag.
flush Flush a stream.
hex Turns on hex flag.
internal Turns on internal flag.
left Turns on left flag.
noboolalpha Turns off boolalpha flag.

Manipulators Meaning
noshowbase Turns off showbase flag.
noshowpoint Turns off showpoint flag.
no showpos Turns off showpos flag.
noskipws Turns off skipws flag.
nounitbuf Turns off unitbuf flag.nounitbuf Turns off unitbuf flag.
nouppercase Turns off uppercase flag.
oct Turns on oct flag.
right Turns on right flag.
scientfic Turns on scientific flag.
setbase(int base) Set the number base to base.

Manipulators Meaning
setfill(int ch) Set the fill character to ch.
setiosflags(fmtflags f) Turn on the flags specified in f.
setprecision(int p) Set the number of digits of precision.
setw(int w) Set the field width to w.
showbase Turns on showbase flag.showbase Turns on showbase flag.
showpoint Turns on showpoint flag.
showpos Turns on showpos flag.
skipws Turns on skipws flag.
unitbuf Turns on unitbuf flag.
uppercase Turns on uppercase flag.
ws Skip leading white space.

INTRODUCTION INTRODUCTION
 Computer programs are associated to workwith files as it helps in storing data &information permanently. File - itself a bunch of bytes stored on somestorage devices. In C++ this is achieved through a componentheader file called fstream.h In C++ this is achieved through a componentheader file called fstream.h The I/O library manages two aspects- asinterface and for transfer of data. The library predefine a set of operations forall file related handling through certainclasses.

File I/O Operations

FilesWrite data Readdata Files

Program +Data

data Tofiles
data fromfiles

The fstream.h header file
A stream is a general term used to name flow of data.
Streams act as an interface between files and programs.
A Stream is sequence of bytes.
They represent as a sequence of bytes and deals with the flowof data.
Every stream is associated with a class having memberfunctions and operations for a particular kind of data flow.functions and operations for a particular kind of data flow.
File Program (Input stream) - reads
Program File (Output stream) – write
All designed into fstream.h and hence needs to be included inall file handling programs.
Diagrammatically as shown in next slide

File Input & Output streams
Input Streams Extracts fromInput stream

Read data

Output Streams InsertsIntooutput stream

Files Program

Write data

I/O Stream classes for File operations
streambuf ostreamistream

ios

filebuf
iostream

ofstreamifstream fstream

fstreambase

I/O Stream Class Hierarchy

FUNCTIONS OF FILE STREAM CLASSES
 filebuf – It sets the buffer to read and write, it contains

close() and open() member functions on it.
 fstreambase – this is the base class for fstream and,

ifstream and ofstream classes. therefore it provides the
common function to these classes. It also contains open()
and close() functions.

 ifstream – Being input class it provides input operations it ifstream – Being input class it provides input operations it
inherits the functions get(), getline(), read(), and random
access functions seekg() and tellg() functions.

 ofstream – Being output class it provides output
operations it inherits put(), write() and random access
functions seekp() and tellp() functions.

 fstream – it is an i/o class stream, it provides
simultaneous input and output operations.

File TYPES
A File can be stored in two ways
Text File
Binary File
Text Files : Stores information in ASCII characters. In text file
each line of text is terminated by with special character knowneach line of text is terminated by with special character known
as EOL (End of Line) In text file some translations takes place
when this EOL character is read or written.
Binary File: it contains the information in the same format as
it is held in the memory. In binary file there is no delimiter for a
line. Also no translation occur in binary file. As a result binary
files are faster and easier for program to read and write.

Opening & Closing a File
• Opening (default mode):

–Create a file stream
–Link it to the filename

Two method to Open a file–Two method to Open a file
• Using constructor function of the class
• Using member function open() of the class

• Closing
–Delinking the file stream from filename

Using constructor of the class
• ofstream out(“data.txt”);
• ifstream in(“data.txt”);

inRead data

out
data.txt Program

Read data

Write data Output Streams

Input Stream

Using member function open()of the class
• creating a filestream for writingofstream out;out.open(“result.txt”,ios::app);
• creating a filestream for reading• creating a filestream for readingifstream in;in.open(“inputdata.txt”,ios::app);
• closing a file

– out.close();
– in.close();

File modes
WHAT IS FILE MODE?
The File Mode describes how a file is to be used ; to
read from it, write to it, to append and so on
Syntax
Stream_object.open(“filename”,mode);
File Modes
ios::out: It open file in output mode (i.e write mode) and
place the file pointer in beginning, if file already exist it will
overwrite the file.
ios::in It open file in input mode(read mode) and permit
reading from the file.

File modes
ios::app It open the file in write mode, and place file pointer
at the end of file i.e to add new contents and retains previous
contents. If file does not exist it will create a new file.
ios::ate It open the file in write or read mode, and place file
pointer at the end of file i.e input/ output operations can
performed anywhere in the file.performed anywhere in the file.
ios::trunc It truncates the existing file (empties the file).
ios::nocreate If file does not exist this file mode ensures that
no file is created and open() fails.
 ios::noreplace If file does not exist, a new file gets created
but if the file already exists, the open() fails.
ios::binary Opens a file in binary mode.

Closing a FileClosing a File
 A File is closed by disconnecting it with the stream it is

associated with. The close() function is used to
accomplish this task.

Syntax:
Stream_object.close();

Example :
fout.close();

Steps To Create A File
1. Declare an object of the desired file stream class(ifstream,
ofstream, or fstream)
2. Open the required file to be processed using constructor or
open function.
3. Process the file.
4. Close the file stream using the object of file stream.

eofeof () Function() Function
This function determines the end-of-file by returning true(non-
zero) for end of file otherwise returning false(zero).

Syntax

Stream_object.eof();Stream_object.eof();

Example :
fout.eof();

Text File Functions
get() – read a single character from text file and store in a
buffer.
e.g file.get(ch);
put() - writing a single character in textfile
e.g. file.put(ch);
getline() - read a line of text from text file store in a buffer.
e.g file.getline(s,80);
We can also use file>>ch for reading and file<<ch writing
in text file. But >> operator does not accept white spaces.

Program to create a text file using strings I/O
#include<fstream.h> //header file for file operations
void main()
{
char s[80], ch;
ofstream file(“myfile.txt”); //open myfile.txt in default output mode
do
{ cout<<”\n enter line of text”;
gets(s); //standard inputgets(s); //standard input
file<<s; // write in a file myfile.txt
cout<<”\n more input y/n”;
cin>>ch;
}while(ch!=’n’||ch!=’N’);
file.close();
} //end of main

Program to read content of ‘myfile.txt’ and display it
on monitor.

#include<fstream.h> //header file for file operations
void main()
{
char ch;
ifstream file(“myfile.txt”); //open myfile.txt in default input mode
while(file)
{ file.get(ch) // read a{ file.get(ch) // read a
character from text file ‘
myfile.txt’
cout<<ch; // write a character in text file ‘myfile.txt ‘
}
file.close();
} //end of main

Binary File Functions
read()- read a block of binary data or reads a fixed number of
bytes from the specified stream and store in a buffer.
Syntax : Stream_object.read((char *)& Object, sizeof(Object));
e.g file.read((char *)&s, sizeof(s));e.g file.read((char *)&s, sizeof(s));
write() – write a block of binary data or writes fixed number
of bytes from a specific memory location to the specified
stream.
Syntax : Stream_object.write((char *)& Object, sizeof(Object));
e.g file.write((char *)&s, sizeof(s));

Binary File Functions
Note: Both functions take two arguments.
• The first is the address of variable, and the second is the
length of that variable in bytes. The address of variable must
be type cast to type char*(pointer to character type)
• The data written to a file using write() can only be read
accurately using read().

Program to create a binary file ‘student.dat’ using structure.
#include<fstream.h>
struct student
{
char name[15];
float percent;
};
void main()
{
ofstream fout;
char ch;char ch;
fout.open(“student.dat”, ios::out | ios:: binary);
clrscr();
student s;
if(!fout)
{
cout<<“File can’t be opened”;
exit(0);
}

do
{ cout<<”\n
enter name of student”;
gets(s);
cout<<”\n enter percentage”;
cin>>percent;
fout.write((char *)&s,sizeof(s)); // writing a record in a student.dat file
cout<<”\n more record y/n”;
cin>>ch;cin>>ch;
}while(ch!=’n’ || ch!=’N’);
fout.close();
}

Program to read a binary file ‘student.dat’ display records
on monitor.
#include<fstream.h>
struct student
{
char name[15];
float percent;
};
void main()void main()
{
ifstream fin;
student s;
fin.open(“student.dat”,ios::in | ios:: binary);
fin.read((char *) &s, sizeof(student)); //read a record from file
‘student.dat’

CONTD....

while(file)
{
cout<<s.name;
cout<<“\n has the percent: ”<<s.percent;
fin.read((char *) &s, sizeof(student));
}
fin.close();
}

File Pointer
The file pointer indicates the position in the file at which the
next input/output is to occur.
Moving the file pointer in a file for various operations viz
modification, deletion , searching etc. Following functions are
usedused
seekg(): It places the file pointer to the specified position in
input mode of file.
e.g file.seekg(p,ios::beg); or
file.seekg(-p,ios::end), or
file.seekg(p,ios::cur)
i.e to move to p byte position from beginning, end or current
position.

File Pointer
seekp(): It places the file pointer to the specified position in
output mode of file.
e.g file.seekp(p,ios::beg); or file.seekp(-p,ios::end), or
file.seekp(p,ios::cur)
i.e to move to p byte position from beginning, end or current
position.position.
tellg(): This function returns the current working position of the
file pointer in the input mode.
e.g int p=file.tellg();
tellp(): This function returns the current working position of the
file pointer in the output mode.
e.f int p=file.tellp();

File Pointers
• Each file has two associated pointers

– get pointer : to reads from file from given location
– put pointer : to writes to file from given location

• Manipulation of get pointer• Manipulation of get pointer
– seekg: moves get pointer to a specified location
– tellg: gives the current position of the get pointer

• Manipulation of put pointer
– seekp: moves put pointer to a specified location
– tellp: gives the current position of the put pointer

Moving to a specified location in file
• Syntax:

– seekg(n_bytes); //can be + or – n bytes
– seekg(n_bytes, reposition);

• repostion constants:• repostion constants:
– ios::beg
– ios::cur
– ios::end

NOTE:+ go forward by n bytes- go backwards by n bytes

Error Handling with Files
• File which we are attempting to open for reading does not exist.
• The filename used for a new file may already exist.exist.
• attempting an invalid operation such as reading past the eof.
• attempting to perform an operation when a file is not opened for that purpose.

Function Return value & meaning
eof() returns true (non-zero) if end-of-file encounterd while reading otherwise false(zero)
fail() returns true when an iput of output operation has failed
bad() returns true if an invalid operation is bad() returns true if an invalid operation is attempted of any unrecoverable error as occurred. if it false it may possible to recover from any other error reported and continue operation
good() returns true if no error has occurred, if it false , no further operations can be carried out.

