
Introduction toJava Programming

T.LOGESWARI

What is Java
• Java is a programming language and a platform.
• Java is a high level, robust, secured and object-oriented programming language.
• Platform: Any hardware or software environment in which a program runs, is known as a platform. in which a program runs, is known as a platform. Since Java has its own runtime environment (JRE) and API, it is called platform.
•

2

Where it is used?
• According to Sun, 3 billion devices run java. There are many devices where java is currently used. Some of them are as follows:
• Desktop Applications such as acrobat reader, media player, antivirus etc.
• Web Applications such as irctc.co.in, javatpoint.com etc.
• Enterprise Applications such as banking applications.• Enterprise Applications such as banking applications.
• Mobile
• Embedded System
• Smart Card
• Robotics
• Games etc.

3

Java Applications
• We can develop two types of Java programs:

– Stand-alone applications
– Web applications (applets)
– Enterprise Application– Enterprise Application
– Mobile Application

Types of Java Applications
1) Standalone Application
• It is also known as desktop application or window-based application.
• An application that we need to install on every machine such as media player, antivirus etc.
• AWT and Swing are used in java for creating standalone applications.• AWT and Swing are used in java for creating standalone applications.2) Web Application
• An application that runs on the server side and creates dynamic page, is called web application.
• Currently, servlet, jsp, struts, jsf etc. technologies are used for creating web applications in java.

5

3) Enterprise Application
• An application that is distributed in nature, such as banking applications etc.
• It has the advantage of high level security, load balancing and clustering.
• In java, EJB is used for creating enterprise applications.applications.
4) Mobile Application
• An application that is created for mobile devices.
• Currently Android and Java ME are used for creating mobile applications.

6

Applets v/s Applications
• Different ways to run a Java executable are

Application- A stand-alone program that can be invoked from command line . A program that has a “mainmain” method
Applet- A program embedded in a web page , to Applet- A program embedded in a web page , to be run when the page is browsed . A program that contains no “main” method

• Application –Executed by the Java interpreter.
• Applet- Java enabled web browser.

Java is Compiled and Interpreted
Programmer

Source Code Byte Code

Hardware and
Operating System

Text Editor Compiler Interpreter
Source Code

.java file

Byte Code

.class file
Notepad,
emacs,vi

javac java
appletviewer
netscape

Compiled Languages
Programmer

Source Code Object
Code

Executable
Code

Text Editor Compiler linker
Source Code

.c file
Code

.o file
Notepad,
emacs,vi gcc

Code
a.out file

Total Platform Independence
JAVA COMPILERJAVA COMPILER
JAVA BYTE CODEJAVA BYTE CODE

(translator)

JAVA INTERPRETERJAVA INTERPRETER

Windows 95 Macintosh Solaris Windows NT

(same for all platforms)

(one for each different system)

Architecture Neutral & Portable
• Java Compiler - Java source code (file with extension .java) to bytecode (file with extension .class)
• Bytecode - an intermediate form, closer to machine representation
• A interpreter (virtual machine) on any target platform interprets the bytecode.

Getting Started with Java Programming
• A Simple Java Application
• Compiling Programs• Compiling Programs
• Executing Applications

12

A Simple Application
Example 1.1
//This application program prints Welcome
//to Java! package chapter1;
public class Welcome {public class Welcome {public static void main(String[] args) { System.out.println("Welcome to Java!");}}

13

RunSource
NOTE: To run the program, install slide files on hard disk.

Creating and Compiling Programs
• On command line

– javac file.java

Source Code

Create/Modify Source Code

Compile Source Code
i.e. javac Welcome.java

14

Bytecode

Run Byteode
i.e. java Welcome

Result

If compilation errors

If runtime errors or incorrect result

Executing Applications
• On command line

– java classname

Bytecode

15

JavaInterpreter
on Windows

JavaInterpreter
on Sun Solaris

JavaInterpreter
on Linux ...

Example
javac Welcome.java
java Welcome
output:...

16

Anatomy of a Java Program
• Comments
• Package
• Reserved words
• Modifiers
• Statements
• Blocks
• Classes
• Methods
• The main method

17

Comments
•In Java, comments are preceded by two slashes (//) in a line, or
enclosed between /* and */ in one or multiple lines.

•When the compiler sees //, it ignores all text after // in the same line.

• When it sees /*, it scans for the next */ and ignores any text between
/* and */.

18

Package
•The second line in the program (package chapter1;) specifies a
package name, chapter1, for the class Welcome.
• Forte compiles the source code in Welcome.java, generates • Forte compiles the source code in Welcome.java, generates
Welcome.class, and stores Welcome.class in the chapter1 folder.

19

Reserved Words
•Reserved words or keywords are words that have a specific meaning to
the compiler and cannot be used for other purposes in the program.
• For example, when the compiler sees the word class, it understands • For example, when the compiler sees the word class, it understands
that the word after class is the name for the class.
•Other reserved words in Example 1.1 are public, static, and void.

20

Modifiers
•Java uses certain reserved words called modifiers that specify the
properties of the data, methods, and classes and how they can be used.
• Examples of modifiers are public and static. Other modifiers are • Examples of modifiers are public and static. Other modifiers are
private, final, abstract, and protected.
•A public datum, method, or class can be accessed by other programs.
• A private datum or method cannot be accessed by other programs.

21

Statements
•A statement represents an action or a sequence of actions.
•The statement System.out.println("Welcome to Java!") in the program
in Example 1.1 is a statement to display the greeting "Welcome to in Example 1.1 is a statement to display the greeting "Welcome to
Java!" Every statement in Java ends with a semicolon (;).

22

Blocks
•A pair of braces in a program forms a block that groups components of a
program.

public class Test {

23

public class Test { public static void main(String[] args) { System.out.println("Welcome to Java!"); } }

Class block
Method block

Classes
•The class is the essential Java construct.
•A class is a template or blueprint for objects.
• To program in Java, you must understand classes and be able to write • To program in Java, you must understand classes and be able to write
and use them.
•For now, though, understand that a program is defined by using one or
more classes.

24

Methods
What is System.out.println?
•It is a method: a collection of statements that performs a sequence of
operations to display a message on the console.
• It can be used even without fully understanding the details of how it works. • It can be used even without fully understanding the details of how it works.
•It is used by invoking a statement with a string argument.
•The string argument is enclosed within parentheses. In this case, the
argument is "Welcome to Java!" You can call the same println method with a

different argument to print a different message.
25

main Method
•The main method provides the control of program flow. The Java interpreter
executes the application by invoking the main method.
•The main method looks like this:

public static void main(String[] args) {public static void main(String[] args) {
// Statements;
}

26

Program Processing
• Compilation

javac hello.java
results in HelloInternet.class

• Execution• Execution
java HelloInternet
Hello Internet
#

Summary
• class keyword is used to declare a class in java.
• public keyword is an access modifier which represents visibility, it means it is visible to all.
• static is a keyword, if we declare any method as static, it is known as static method.• static is a keyword, if we declare any method as static, it is known as static method.

– The core advantage of static method is that there is no need to create object to invoke the static method.
– The main method is executed by the JVM, so it doesn't require to create object to invoke the main method. So it saves memory.

28

• void is the return type of the method, it means it doesn't return any value.
• main represents startup of the program.
• String[] args is used for command line • String[] args is used for command line argument.
• System.out.println() is used print statement.

29

• What happens at compile time?
• At compile time, java file is compiled by Java Compiler (It does not interact with OS) and converts the java code into bytecode.converts the java code into bytecode.

30

• What happens at runtime?
• At runtime, following steps are performed:

Classloader: is the subsystem of JVM thatis used to load class files.

31

Bytecode Verifier: checks the codefragments for illegal code that can violateaccess right to objects.
Interpreter: read bytecode stream thenexecute the instructions.

INTRODUCTION

Dr.T.Logewari

• JVM - JVM (Java Virtual Machine) is an abstract machine that enables your computer to run a Java program.
• JRE - JRE (Java Runtime Environment) contains JVM, supporting libraries, and other components to run a Java program. However, it doesn't contain any compiler and debugger.it doesn't contain any compiler and debugger.
• JDK - JDK (Java Development Kit) contains JRE and tools such as compilers and debuggers for developing Java applications.

What is JVM?
• JVM (Java Virtual Machine) is an abstract machine that enables your computer to run a Java program.
• When you run the Java program, Java • When you run the Java program, Java compiler first compiles your Java code to bytecode. Then, the JVM translates bytecode into native machine code (set of instructions that a computer's CPU executes directly).

• Java is a platform-independent language. It's because when you write Java code, it's ultimately written for JVM but not your physical machine (computer).
• Since, JVM executes the Java bytecode which is platform independent, Java is platform-independent.independent.

What is JRE?
• JRE (Java Realtime Environment) is a software package that provides Java class libraries, along with Java Virtual Machine (JVM), and other components to run applications written in Java programming.in Java programming.
• JRE is the superset of JVM.

What is JDK?
• JDK (Java Development Kit) is a software development kit to develop applications in Java.
• When you download JDK, JRE is also downloaded, and don't need to download it downloaded, and don't need to download it separately.
• In addition to JRE, JDK also contains number of development tools (compilers, JavaDoc, Java Debugger etc).
•

Relationship between JVM, JRE, and JDK.

Command Line Arguments
• A java application can accept any number of arguments from the command line
• The user enter command line argument when invoking the application and specifies them invoking the application and specifies them after the name of the class to be run

Why they used
• To turn on debugging input, to indicate a file name to read or write from, or for any other information that might want our java program to know.
• Java application are stand alone program, it is • Java application are stand alone program, it is useful to be able to pass argument or option to that program to determine how the program is going to run
• In this case we pass argument by using command line arguments

Find Factorial of Given number using CLA
Class factorial {
Pubic static void main(String args[]){
Int num = Integer.parseInt(args[0]);
//take argument as command line//take argument as command line
Int result = 1
While(num>o){
Result = result *num;
Num--;
}

System.out.println(“factorial of given
number:”+result);

}
}
Output
Java factorial 4Java factorial 4
Factorial of given number is : 24

Java Variables
• A variable is a location in memory (storage area) to hold data.
• To indicate the storage area, each variable should be given a unique name (identifier).should be given a unique name (identifier).

How to declare variables in Java?
int speedLimit = 80;

Here, speedLimit is a variable of int data type, and is assigned value 80.
Meaning, the speedLimit variable can store Meaning, the speedLimit variable can store integer values.

• Java is a statically-typed language. It means that all variables must be declared before they can be used.

Rules for Naming Variables in Java
• Java programming language has its own set of rules and conventions for naming variables.
• Variables in Java are case-sensitive.
• A variable's name is a sequence of Unicode letters and digits. It can begin with a letters and digits. It can begin with a letter, $ or _.
• However, it's convention to begin a variable name with a letter. Also, variable name cannot use whitespace in Java.

4 types of variables in Java programming language:
• Instance Variables (Non-Static Fields)
• Class Variables (Static Fields)
• Local Variables
• Parameters• Parameters

Java Primitive Data Types

Java Keywords
• Keywords are predefined, reserved words used in Java programming that have special meanings to the compiler. For example:

int score;
• Here, int is a keyword. It indicates that the • Here, int is a keyword. It indicates that the variable score is of integer type (32-bit signed two's complement integer).
• You cannot use keywords like int, for, class etc as variable name (or identifiers) as they are part of the Java programming language syntax.

Here's the complete list of all keywords in Java programming.
Java Keywords List
abstract assert boolean break byte
case catch char class const
continue default do double else
enum extends final finally floatenum extends final finally float
for goto if implements import
instanceof int interface long native
new package private protected public
return short static strictfp super
switch synchronized this throw throws
transient try void volatile while

Java identifiers
• Identifiers are the name given to variables, classes, methods etc.
• Consider the above code;

int score;
• Here, score is a variable (an identifier). You • Here, score is a variable (an identifier). You cannot use keywords as variable name. It's because keywords have predefined meaning. For example,

int float;

Rules for Naming an Identifier
• Identifier cannot be a keyword.
• Identifiers are case-sensitive.
• It can have a sequence of letters and digits. However, it must begin with a letter, $ or _. The first letter of an identifier cannot be a The first letter of an identifier cannot be a digit.
• It's convention to start an identifier with a letter rather and $ or _.
• Whitespaces are not allowed.
• Similarly, you cannot use symbols such as @, #, and so on.

Operators
• Operators are special symbols (characters) that carry out operations on operands (variables and values).
• For example, + is an operator that performs • For example, + is an operator that performs addition.

Arithmetic Operators
• Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication etc.

Operator Meaning

+ Addition (also used for string concatenation)
- Subtraction Operator
* Multiplication Operator
/ Division Operator
% Remainder Operator

class ArithmeticOperator
{
public static void main(String[] args)
{
String start, middle, end, result;
start = "Talk is cheap. ";start = "Talk is cheap. ";
middle = "Show me the code. ";
end = "- Linus Torvalds";
result = start + middle + end; System.out.println(result);
}
}

ASSIGNMENT OPERATORS

Assignment Operator
• Assignment operators are used in Java to assign values to variables. For example,

int age; age = 5;
• The assignment operator assigns the value on • The assignment operator assigns the value on its right to the variable on its left. Here, 5 is assigned to the variable age using = operator.

Class AssignmentOperator
{
public static void main(String[] args)
{
int number1, number2;
// Assigning 5 to number1

Output

5
5// Assigning 5 to number1

number1 = 5;
System.out.println(number1);
// Assigning value of variable number2 to number1
number2 = number1; System.out.println(number2);
} }

5

The shorthand assignment operator
• The operator perform shortcut in common programming operation
• It is also called compound assignment operatoroperator
• Syntax

var1 operator = var2

Java Assignment Operators
operator Example Equivalent to
+= x += 5 x = x + 5
-= x -= 5 x = x - 5
*= x *= 5 x = x * 5
/= x /= 5 x = x / 5/= x /= 5 x = x / 5
%= x %= 5 x = x / 5
<<= x <<= 5 x = x << 5
>>= x >>= 5 x = x >> 5
&= x &= 5 x = x & 5
^= x ^= 5 x = x ^ 5
|= x |= 5 x = x | 5

Unary Operators
• Unary operator performs operation on only one operand.

operator Meaning
+ Unary plus (not necessary to use since numbers are positive without using it)positive without using it)
- Unary minus; inverts the sign of an expression
++ Increment operator; increments value by 1
-- decrement operator; decrements value by 1
! Logical complement operator; inverts the value of a boolean

UNARY OPERATORS

Unary plus
class UnaryOperator {
public static void main(String[] args)
{ double number = 5.2; System.out.println(number++);

Output
5.2
6.2System.out.println(number++); System.out.println(number); System.out.println(++number); System.out.println(number); } }

6.2
7.2
7.2

• When System.out.println(number++); statement is executed, the original value is evaluated first.
• The number is increased only after that. That's why you are getting 5.2 as an output.
• Then, when System.out.println(number); is executed, the increased value 6.2 is displayed.executed, the increased value 6.2 is displayed.
• However, when System.out.println(++number); is executed, number is increased by 1 first before it's printed on the screen.

Equality and Relational Operators
• The equality and relational operators determines the relationship between two operands.
• It checks if an operand is greater than, less than, equal to, not equal to and so on.than, equal to, not equal to and so on.
• Depending on the relationship, it results to either true or false.
• Equality and relational operators are used in decision making and loops

Operator Description Example

== equal to 5 == 3 is evaluated to false
!= not equal to 5 != 3 is evaluated to true
> greater than 5 > 3 is evaluated > greater than 5 > 3 is evaluated to true
< less than 5 < 3 is evaluated to false
>= greater than or equal to 5 >= 5 is evaluated to true
<= less then or equal to 5 <= 5 is evaluated to true

class RelationalOperator
{ public static void main(String[] args)
{
int number1 = 5, number2 = 6;
if (number1 > number2) { System.out.println("number1 is greater than

Output
number2 is greater than number1.

System.out.println("number1 is greater than number2.");
} else
{ System.out.println("number2 is greater than number1.");
} } }

type comparison operator
• In addition to relational operators, there is also a type comparison operator instanceof which operator instanceof which compares an object to a specified type. For example,

INSTANCE OF OPERATOR

class instanceofOperator
{
public static void main(String[] args)
{ String test = "asdf";
boolean result; boolean result;
result = test instanceof String; System.out.println(result);
} }

Logical Operators
• The logical operators || (conditional-OR) and && (conditional-AND) operates on boolean expressions.
• Here's how they work.• Here's how they work.

Operator Description Example

||
conditional-OR; true if either of the booleanexpression

false || true is evaluated to trueexpression is true
to true

&&
conditional-AND; true if all booleanexpressions are true

false && true is evaluated to false

class LogicalOperator
{ public static void main(String[] args)
{ int number1 = 1, number2 = 2, number3 = 9; boolean result;
// At least one expression needs to be true for result to be trueresult to be true
result = (number1 > number2) || (number3 > number1);
// result will be true because (number1 > number2) is true
System.out.println(result);

// All expression must be true from result to be true
result = (number1 > number2) && (number3 > number1);
// result will be false because (number3 > number1) is false number1) is false
System.out.println(result);
} } Output

true
false

• Which operator are called short circuit logical operator?
&& and || are short circuit operator

• What type of values can be used • What type of values can be used as operands of the logical operator?
The logical operator must have operands of type boolean

Ternary Operator
• The conditional operator or ternary operator ?: is shorthand for if-then-else statement.
• The syntax of conditional operator is:
variable = Expression ? expression1 : expression2variable = Expression ? expression1 : expression2
Here's how it works.
• If the Expression is true, expression1 is assigned to variable.
• If the Expression 1is false, expression2 is assigned to variable.

class ConditionalOperator
{ public static void main(String[] args)
{ int februaryDays = 29;
String result;
result = (februaryDays == 28) ? "Not a leap year" : "Leap year"; : "Leap year";
System.out.println(result);
} } Output

Leap
year

Bitwise and Bit Shift Operators
Operator Description

~ Bitwise Complement
<< Left Shift
>> Right Shift>> Right Shift
>>> Unsigned Right Shift
& Bitwise AND
^ Bitwise exclusive OR
| Bitwise inclusive OR

Additional Operator
• Semicolon :
• Curly bracket{}
• Parentheses()
• Square bracket[]• Square bracket[]
• Comma ,
• Single quote’
• Double quote’’

DOT OPERATOR

NEW OPERATOR

Java Expressions
• Expressions consist of variables, operators, literals and method calls that evaluates to a single value.value.
• let's take an example,
• int score; score = 90;Here, score = 90 is an expression that returns int.

Double a = 2.2, b = 3.4, result;
result = a + b - 3.4;
Here, a + b - 3.4 is an expression.

if (number1 == number2) System.out.println("Number 1 is larger than number 2");
Here, number1 == number2 is an expression that returns Boolean.
Similarly, "Number 1 is larger than number 2" is Similarly, "Number 1 is larger than number 2" is a string expression.

Precedence of Arithmetic Operator
int myInt = 12 - 4 * 2;

What will be the value of myInt? Will it be (12 -4)*2, that is, 16? Or it will be 12 - (4 * 2), that is, 4?
• When two operators share a common operand, 4 in this case, the operator with the highest precedence is operated first.
• In Java, the precedence of * is higher than that of -. Hence, the multiplication is performed before subtraction, and the value of myInt will be 4.

Operators Precedence
postfix increment and decrement ++ --
prefix increment and decrement, and unary ++ -- + - ~ !
multiplicative * / %multiplicative * / %
additive + -
shift << >> >>>
relational < > <= >= instanceof
equality == !=

bitwise AND &
bitwise exclusive OR ^
bitwise inclusive OR |
logical AND &&
logical OR ||logical OR ||
ternary ? :
assignment = += -= *= /= %= &= ^= |= <<=>>=>>>=

Example: Operator Precedence
class Precedence
{ public static void main(String[] args)
{ int a = 10, b = 5, c = 1, result;
result = a-++c-++b; result = a-++c-++b;
System.out.println(result);
} } output will be:

2

• The operator precedence of prefix ++ is higher than that of - subtraction operator.
• Hence,
• result = a-++c-++b;is equivalent to• result = a-++c-++b;is equivalent to

result = a-(++c)-(++b);

Associativity of Operators in Java
• If an expression has two operators with similar precedence, the expression is evaluated according to its associativity (either left to right, or right to left). Let's take and example.or right to left). Let's take and example.

a = b = c;
Here, the value of c is assigned to variable b. Then the value of b is assigned of variable a. Why? It's because the associativity of = operator is from right to left.

Operators Precedence Associativity
postfix increment and decrement ++ -- left to right
prefix increment and decrement, and unary ++ -- + - ~ ! right to leftand unary
multiplicative * / % left to right
additive + - left to right
shift << >> >>> left to right
relational < > <= >= instanceof left to right

equality == != left to right
bitwise AND & left to right
bitwise exclusive OR ^ left to right
bitwise inclusive OR | left to rightOR
logical AND && left to right
logical OR || left to right
ternary ? : right to left
assignment = += -= *= /= %= &= ^= left to right

MATHEMATICAL FUNCTIONS

Classes and Object

Dr.T.Logeswari

Class
• All java programs activity occurs within a class
• A class is a template that define the form of an object.of an object.
• It specifies both data and code that will operate on that data
• Java uses a class to construct object
• Object are instances of a class

Class Definition
• A class contain data member and methods
• Data member(instance variable)

– These variables that store data items .they are also referred to as fields or member variables of a also referred to as fields or member variables of a class
• Methods

– These define the operation you can perform for the class

Definition of class and object
• A class is a template that define the form of an object
• A class is a generic template for creating objectobject
• Class = data + methods
• A object is an instance of a class

Defining a class
• A class is created by using the keyword class
[access specifier] [class modifier] class Class Name[extend Super ClassName][implements interfaceList]interfaceList]
{
[variable declaration]
[method declaration]
}

• The element between the pair of square bracket[] are optional
• The access modifier specifies who can access this class
• The class modifier specify the behavioral restriction on this classrestriction on this class
• Class then followed by class name
• The class may or may not contain variable declaration or method declaration

Adding variable to class• We can declare the variable inside the class
• The variable inside the class are of two types

– The class variable and instance variable
• The class variable will always have the modifier static in front of them
• Example

Static int age = 30;

• The same variable defined instance variable would be
Example

Int age =30;Int age =30;

Adding method to class
• The methods are function that manipulate the data defined by the class and in many cases provide access to that datadata
• The other part of the program will interact with a class through its methods
• The method will perform some task

–A method contains one or more statement. In well written java code each method perform only one task

• In general we can give a method whatever name we like. However the main() is reserved for entry point for program execution
• We should not use java keyword for method names
• The general form
[modifier]return type method-name(parameter-[modifier]return type method-name(parameter-list)
{
//body of method
}

• Return type – it specifies the type of data returned by the method (any valid data type)
– If does not return a value then return type must be void

• Method – the name of the method is specified by name. this can be legal identifier
• Parameter-it is variable that receive the value • Parameter-it is variable that receive the value of the argument passed to the method when it is called
• Modifier- it is a list of method modifier that declare various attributes of method

Creating Object
• A object is created by instantiating a class
• The process of creating an object of a class is called as instantiation and created object is called as an instancecalled as an instance
• To create a new object java uses the keyword new
• The object are created using new operator with the name of the class

• The general form
<class name><reference-variable>= new<class name>([arguments])
Class name – the name of the class
Reference variable – it can refer to an object
New – operator to create an objectNew – operator to create an object
Argument - optional

Accessing Class Member
• We can access the member of the class using dot operator
• The dot operator links the name of the object with the name of a memberwith the name of a member
• The general form

to access variable = object.variable
to access methods = object.methods()

Constructor
• New object is created, the garbage value will be stored in variable initially.
• Accessing these value leads some unwanted resultresult
• To avoid we use member function such as getdata() and setdata() to provide initial value of object.
• But the initialization can be done only after creating the object

• Therefore the mechanism to initialize an object during its creation using special member function known as constructor

Constructor
• If we want to set the default values for instance variables at the time of creation of an object, then we should use constructor
• A constructor initialize an object when it is • A constructor initialize an object when it is created.
• It has the same name as its class name
• It have no explicit return type
• We will use constructor, to give initial values to the instance variable defined by the class

• A class have constructor, whether we define one or not, java automatically provides default constructor that initialize all member variable to zero
• The constructor are of two types
• Constructor with no argument(default argument)argument)

A(){}
• Constructor with arguments(parameterized constructor

A(int a){}

• The constructor can be overloaded.
• Example

A(int a) { } A(byte b){ } A(long l){}
The constructor are having the same name and same number of argument but different type of argumentof argument

Default Constructor Parameterized constructor
The default constructor is useful to initialize all object with same data

Parameterized Constructor is useful to initialize each object with different data
It does not have any argument It will have 1 or more argument
When data is not passed at When data is not passed at When data is not passed at the time of creating an object, default constructor will be called

When data is not passed at the time of creating an object, parameterized constructor will be called

Constructor Methods
The constructor is used to initialize the instance variable of class

A method is used for any general purpose task like calculation
A Constructor name should always be same as class name

A method name and class name is same or different
A constructor is called at A method can be called A constructor is called at the time of creating an object

A method can be called after creating the object
A constructor is called only once per object A method can be called any number of times on the object
A constructor is called and executer automatically A method is executed only when we want it

Using this Keyword
• this refers to the current object
• Whenever it is required to point an object from a functionality which is under execution then use this keywordthen use this keyword
• It always points to an object that is executing the block in which this keyword is present

• The use of this is to call constructor from another constructor, specifically one in the current class
• The process of calling constructor from other constructor is called constructor chaining
• The constructor call should be the first • The constructor call should be the first statement in the constructor (example)
• The second function of this is to avoid namespace conflict between a methods or constructor parameter list and its variable

Method Overloading
• In java, two or more methods within the same class can have the same name but with different number of arguments and type of arguments. The method are said to be arguments. The method are said to be overloaded and the process is referred to as method overloading

Method overloading is one of the ways thatjava implements polymorphism

• Each method has a signature (method, number of arguments and type of arguments)
• The method overloading is not based on the return type
• One method to overload another, the type or number of argument must be different
• The below method are overloadedpublic void aMethod(string s){}public void aMethod(string s){}public void amethod(){}public void amethod(int i, string s){}public void amethod(inti , int j){}All the above method are unique within one class because each of them has different signature

• What is polymorphism?
Defining more than one functionality with the same name is nothing but a polymorphism

• What are the types of • What are the types of polymorphism?
two types – compile time(static)

-- Run time(dynamic)

• What is compile time or static polymorphism?
Defining more than one functionality with the same name but with different arguments in the same class is known as static polymorphismstatic polymorphism

• How static polymorphism is achieved in java?
It is achieved using method overloading

Static variables and methods
• A class member must be accessed through an object of its class
• But it is possible without creating an object create a class membercreate a class member
• The keyword is static
• Keyword can be used in three scenarios

– Static variables
– Static methods
– Static block of code

Static variables
• The instance variable are non static and it is part of an object
• The static variables are special type of variables that are not associated with an variables that are not associated with an object, they associated with class
• The static variables are also called as class variables
• It can be accessed without an object

Declaring static variables
class staticDemo

{
int x,y;
Static int z;Static int z;

}
You can directly accessed by the class name and doesnot need any object
Syntax

<class-name>.<variable-name>

Static methods
• The methods can be declared as static
• A static method is associated with a class rather than the instances
• The static methods are also called as class membersmembers
• The most common example of a static member is main()
• The main() is declared as static because it must be called by the operating system when our program begin

Declaring static methods
class StaticDemo{ int x,y;Static int z;Void static method1()Void static method1(){System.out.println(z);}}

Static and non static blocks
• In real time scenarios block are used to provide information regarding the project(ie version , copy right, name of the company developed the project) this is the use of static blockproject) this is the use of static block
• If we have many constructor in a class and if every constructor has some common statement. Then instead of repeating those statement in each constructor, we place in non static block(avoid duplication of code)

INHERITANCE

• Java classes can be reused in several ways. Reusing class can be accomplished by inheritance.
• The mechanism of deriving a new class from an old one is called inheritance.

INHERITANCE

• The already existing class from which a new class is created is known as the base class or super class or parent class and the newly created class is called the subclass or derived class or child class.

• In the language of java, a class that is inherited is called a super class
• The class that does the inheriting is called subclass
• A subclass is a specialized version of a super classclass
• It inherits all of the variable and method defined by the super class and add its own, unique variable and methods

There are different types of inheritance like:
 Single inheritance (only one super class)
 Multiple inheritance (several super classes)

TYPES OF INHERITANCE

 Multiple inheritance (several super classes)
 Hierarchical inheritance (one super class, many subclasses)
 Multilevel inheritance (Derived from derived class)

Defining SubClass
• Java support inheritance by allowing one class to incorporate another class into its declaration
• This is done by using extends keyword• This is done by using extends keyword
• The subclass adds to (extends) the superclass
• The general form is

class < subclass name > extends <superclass> {
<body of the class: method and variable>}

Overriding Methods
• When we create a subclass of a class, it inherits behavior of the original class
• The subclass can reuse this inherited behavior.
• If you want to modify some of the inherited • If you want to modify some of the inherited behavior to match the specialized behavior it is supposed to implement.
• If you modify the behavior by redefining the inherited method in the subclass

• This redefining is popularly known as method overriding.
• The method in the super class is called as overridden methodoverridden method
• The method in the subclass is called overriding method

example
• Consider a class camera and its subclass SLRcamera.
• The camera class has a shoot() method implementing basic photographying.implementing basic photographying.
• The subclass SLRcamera is specialized camera needing more adjustment while shooting
• So therefore, it is likely to redefine the shooting behavior

Class camera {
Void shoot() {

// common code for all cameras
}
}
Class SLRcamera extends camera {Class SLRcamera extends camera {

Void shoot() {
// very specific code for SLRcamera

}
}

In a class hierarchy, when a method in a subclasshas the same name and type signature as itsmethods in super class then the method in the

METHOD OVERRIDING

methods in super class then the method in thesubclass is said to be overriding.

class Base{ Base(){System.out.println("Constructor of super class");}void fun1()

Example

void fun1(){System.out.println("Function inside Super class iscalled");}}

class Sub extends Base
{

Sub()
{
System.out.println("Constructor of sub class");

}
void fun1()
{
System.out.println("Function inside Sub class is called");

}
}}
class MethodOverloadingDemo
{

public static void main (String args[])
{

Sub s=new Sub();
s.fun1();

}
}

Note:
• Whenever u create an object of a base class,
–it will call the super class constructor firstconstructor first
–Then the sub class constructor will be called and finally
–The functions invoked will be called based on the definition

Method Overloading Method Overriding
Any access modifier can be used Overriding methods cannot be more restrictive than overridden method
Signature has to be different Signature has to be the same
Which method to be called will be decided at the time Which method to be called will be decided at the time will be decided at the time of compilation will be decided at the time of runtime based on type of object
Method can be static or non static The static methods don’t participate in overriding
There is no limit on number of overloaded methods a class can have

Each parent class method may be overridden at most once in any sub clsaa

• The super keyword is used to refer super classobject
• It is used for the following purpose

– To call superclass method from subclass. If bothsubclass and superclass contain the samemethod. That is when the methods are

SUPER KEYWORD

method. That is when the methods areoverridden
– If subclass and superclass contain the samevariable, then we can access the superclassvariable using super keyword
– super is used to call superclass constructorexplicitly

• What are the rules of using super?
–The super should be the first statement inside the constructor
–The super and this cannot be used together
–The super cannot be used inside static –The super cannot be used inside static methods
–If we do not write super, then java provides the super() by default

This Super
It refer to current object It refer to superclassobject
It is used to call the constructor of same class

It is used to call the constructor of superclassclass superclass
It is used to differentiate between instance variable and local variable of same name

It is used to differentiate between instance variable of subclass and superclass

Final classes are those classes which cannot beinherited, that is, a final class cannot besubclassed.

FINAL CLASS

 If a class has to be prevented from beinginherited, the class can be declared as final.
This is achieved in Java using the keyword final

final class Base{ Base(){System.out.println("Constructor of super class");}void fun1()

Example

void fun1(){System.out.println("Function inside Super class iscalled");}}

class Sub extends Base{ Sub(){System.out.println("Constructor of sub class");}/* void fun1(){System.out.println("Function inside Sub class is called");}*/}class FinalDemoclass FinalDemo{ public static void main (String args[]){ Sub s=new Sub();s.fun1();}}

When the above program is compiled, itwould give the following error.
• FinalDemo.java:12: cannot inherit from final Base• FinalDemo.java:12: cannot inherit from final Base
• class Sub extends Base

All methods and variables can be overridden bydefault in subclasses.
To prevent the subclasses from overriding themembers of the super class, they can be declared asfinal using the modifier as ‘final’.

Final Variables and Methods

final using the modifier as ‘final’.
Example:

final int SIZE = 100;
the value of a final variable can never be changed.
Final method cannot be altered.

Abstract Method is a method which does not have any definition which means
A method without any implementation
Declaration of such method has only the method signature followed by semicolon

ABSTRACT METHOD

There will be no body for the method.
Example

abstract void method();

 It is a class in which contain at least one or moreabstract method
 An Abstract class is denoted by the modifier abstract.
An abstract class can only serve as a base class.
 It cannot be instantiated.

ABSTRACT CLASS

abstract class classname{ { \\variables and Methods Declaration}}

Abstract class test{
Int a,b,c;
Abstract void method1()
Abstract void method2()
void method3(){
}}
}
The above class contain both abstract and normal method. The abstract method does not have body and normal method have body

abstract class A{abstract void abfun();}class B extends A{ void abfun(){ System.out.println(“The abstract function completed inthe subclass”);the subclass”);}}class AbstractDemo{public static void main(String args[]){ B b=new B();b.abfun();}}

Garbage Collection
• When we create an object with a new keyword, java allocates heap memory to the newly created object, This memory remains allocated throughout the lifecycle of the object.
• When the object is no more referenced, this • When the object is no more referenced, this allocated heap memory is eligible to be released back to heap as a free memory.
• The mechanism java uses to automatically release the allocated memory is called as the automatic garbage collection

Requesting a garbage collection
• Java provides the facility to request the JVM to perform garbage collection
• When we make such request, the chance that garbage collection will occur in near future garbage collection will occur in near future increases
• We are making only request and JVM does not guarantee that it will comply with our request

How can we request garbage collection
• We can request garbage collection in two ways

using RunTime class
RunTime runtime = Runtime.getRuntime();RunTime runtime = Runtime.getRuntime();
runtime.gc();

using System Class
System.gc();

Finalize() method
• We can do some clean up operation just before an object is garbage collected.
• These operation are known as finalization
• The use of finalization is to release resources held by the objectby the object
• This method is a member of the java.lang.objectclass
• The every class has the object class as its superclass, this method is automatically inherited in all the class

• We can override the finalize method in our class to perform any finalization necessary for objects of that class
• Following code shows how the dog class can override the finalize() method
Class dogClass dog

protected void finalize() throws throwsable {
system.out.println(“garbage collecting the dog object..”);

}

• What is finalization?
The cleanup operations that performed just before an object is garbage collected is known as finalization
• Which method should be overridden to perform cleanup activities?
Protected void finalize() throws Throwable{Protected void finalize() throws Throwable{
}
• Which is super class for any class in java?
Java.lang.object class is superclass for all java classes

The access specifier determines the scope or theaccessibility of a member of the class.
JAVA offers four access specifiers

Access Specifiers

JAVA offers four access specifiers
 private
 protected
 public
 default

 By placing the modifier public before a memberdeclaration, that member is made available for allthe functions inside that class as well as tofunctions of its derived class.
By creating an object of a class inside a function ofany class, the public members of the class can be

Public Access Specifier

any class, the public members of the class can beaccessed.
Public keyword is necessary to enable web browseror applet viewer to show the applet.
Ex. public class Square

{ public x,y,size; }

By placing the modifier protected before a memberdeclaration, that member is made available for allthe functions inside that class as well as tofunctions of its derived class in other package.

Protected Access Specifier

It is also accessible to other classes in the samepackage.

If the user chooses not to place a modifier in frontof the member declaration of a class, the member iscreated with the default properties.
This means that they are accessible to all the classes

Default Access Specifier

This means that they are accessible to all the classes in the same package.

By placing the modifier private before amember declaration, that member is madeavailable only inside that class and not to anyother class.

Private Access Specifier

ArrayArray

 An array is a collection of homogenous variablesthat are referred by the common name.
 A specific element in an array is accessed by itsindex position.

Arrays

index position.
The number of variables that can be stored in anarray is called the array dimension.
Ex. Int roll_no[5];

1. Declaring array
2. Allocating array(Creating)
3. Initializing array

Steps to create an Array

Declaring array
• An array is declared by specifying the data type of element it is going to hold.
• The array declaration is usually the data type followed by a pair of square bracket followed by the name of the array.followed by the name of the array.

datatype[] arrayname; // syntax
example

int[] number;

• Another way is declaring an array is put the pair of square bracket after the arrayname as
int number[];

Both declaration is validBoth declaration is valid
But first form is recommended as it is better readability

Memory model after array declaration diagramdiagram

Int[] int Array; // Array declaration

Allocating array or creating array
• The actual array construction with a new keyword involves the memory allocation and the the memory allocation and the array object creation at runtime

• The following example shows how a simple array is declared at compile time and constructed at runtime
Int[]array; // array declaration
Int array = new int[5]; // array construction at runtimeruntime
Or
Int[] intarray = new int[5]; // array construction at runtime

Memory model after the integer array declaration and creation

Int array = new int[5]; // array construction at runtime

Arrays Size
• When an array object is created, we need to specify how many elements it is going to hold
• It is the array size
• We can specify a variable or an expression as a value of the array sizevalue of the array sizeInt number = 10;Int total = number * 2;Int[] intArray; // array declarationIntarray = new int[total]; // array construction at runtime

Initializing array
• Array can either have all of their element initialized at the time of declaration or the elements can be individually the elements can be individually initialized after declaration

Initializing Array after declaration
• This is example of an array having all of its element individually after the declaration
Int[] myintarray = new int[5];
Myintarray[0]=10;Myintarray[0]=10;
Myintarray[1]=20;
Myintarray[2]=30;
Myintarray[3]=40;
Myintarray[4]=50;

Initializing Array at the time of declaration
• Array can also be created with an array initializer without using new operator
• An array initializer is a code block with a comma separated list of array element, comma separated list of array element, enclosed by a pair of curly braces
• Example create an array of strings

int[] numbers ={ 10,20,30,40,50};

Anonymous Array
Int[]number; // array declaration
number ={10,20,30,40,50}; // error
number =new int[]{10,20,30,40,50};//ok
• In the above code, number array is declared first.first.
• However when it is initialized with the initializer block, compile error occur saying” array constant can only be used in initializer
• The last statement can be used instead of second statement. The last statement is called anonymous arrays

Array of Object References
• An array of object references type is created by specifying the object type and size of the array.
• For example an array of Date object is • For example an array of Date object is declared and constructed as
Date[]birthDate = new Date[5];

 The general form of a one-dimensional arraydeclaration is:type var-name[];
Here, type declares the base type of the array. The base type determines the data type of each element that comprises the array.int month_days[];

Array Types - One-Dimensional Array

int month_days[];
 The array month_days can be linked with anactual, physical array of integers by allocatingusing ‘new’ keyword and assign it to month_days.‘new’ is a special operator that allocates memory.
 The general form isarray-var = new type[size];

class AutoArray
{
public static void main (String args[])
{
intmonth_days[]={31,28,31,30,31,30,31,31,30,31,30,31};
System.out.println(“April has ” + month_days[3] +“days.”);
}
}
Output:
April has30days.

 In Java, multidimensional arrays are actually array of arrays.
 To declare a multidimensional array variable, specify eachadditional index using another set of square brackets.
 For example, the following declares a two-dimensional arrayvariable called twoD.

Two-Dimensional Array

int twoD [] [] = new int [4] [5]
 This allocates a 4 by 5 array and assigns it to twoD.
 Internally this matrix is implemented as an array of arrays ofint.

class FillArray{public static void main(String args[]){int[][] m;m=new int[4][5];for(int row=0;row<4;row++){

Two-Dimensional Array

{for(int col=0;col<5;col++){m[row][col]=row+col;System.out.print("\t elements are" +m[row][col]);}}}}

Strings
• The most important java data types is String
• In many other programming languages String is an array of characters
• This is not the case with java
• String are object in java
• The string class is part of java.lang.package

How strings are created
• We can construct a string just like we construct any other type of object: by using new and call the string constructor
ExampleExample

string str = new string(“hello”);
This create a string object called str that contain the character string “Hello”.

• Another example
string str = “java string are object”

In this case str is initialized to the character sequence “ java string are object”. sequence “ java string are object”.
Once we created string object, we can use it anywhere that a quoted string is allowed

Why string are called immutable
• String object are created by either using new operator or enclosing a sequence of character in double quotes
• The string object created by either way is • The string object created by either way is immutable
• It means once we create a string object by specifying a sequence of character, that object will always represent that same sequence of character throughout its life

Java uses String class to encapsulate string of characters.
String is a sequence of characters STRING CONSTRUCTORSString class provides number of constructorsa. String s=new String() – create instance of string with no characters.

JAVA STRINGS

with no characters.b. String (char[]) – create a string initialized by an array of characters.c. String(char chars[],int startIndex, int numChars)d. String(String strObj)-create string object that contains the same character sequence as another string .

Methods of string class
• The string class has many important methods.
• Following are the commonly used methods
• Concat()
• Replace()• Replace()
• Tolowercase()
• Touppercasse()
• Trim()

Concat()
This method create a new string by appending the content of stringobject passed as argument to the content of string on which the method is invokedpublic String concat(String str)public String concat(String str)
Examples:String str = “skyward”Ssytem.out.println(str.concat(“publisher”); Output: skyward publisher

Replace()
public String replace(char oldChar, char newChar)
Returns a new String resulting from replacing alloccurrences of oldChar in this String withnewChar.newChar.
Examples:
"mesquite in your cellar".replace('e', 'o')returns "mosquito in your collar"

public String toLowerCase()
Converts all of the characters in this String to lower case.

Examples: "DOSA".toLowerCase() returns "dosa"
public String toUpperCase()

Converts all of the characters in this String to upper case.Converts all of the characters in this String to upper case.Examples: "india".toUpperCase() returns "INDIA"
public String trim()Removes white space from both ends of the String.

public class StringDemo{ public static void main(String s[]){ char ch;String str = "This Is A Test";String upper = str.toUpperCase();String lower = str.toLowerCase();String concat = str.concat("In Java");String trm = " Hello World ".trim();String replac = "Hello".replace('l','w');

Example

String replac = "Hello".replace('l','w');ch = "abc".charAt(2);System.out.println(ch);System.out.println("Uppercase " + upper);System.out.println("Lowercase " + lower);System.out.println("Concatenate " + concat);System.out.println("Trimming " + trm);System.out.println("Replace " + replac);}}

Output:
c
Uppercase THIS IS A TEST
Lowercase this is a testLowercase this is a test
Concatenate This Is A TestIn Java
Trimming Hello World
Replace Hewwo

STRING BUFFER
• The String class is immutable (constant), i.e. Strings in java, once created and initialized, cannot be changed.
• The String is a final class, no other class can extend it, and you cannot change the state of the string.
• String values cannot be compare with '==', for string value comparision, use equals() method. String class supports various methods, including comparing strings, extracting substrings, searching characters & substrings, converting into either lower case or upper case, etc.

STRING BUFFER
• String buffer represent the characters in java in a growable and modifiable manner.
• It is providing convenient way to modify strings.
• It defines three constructors• It defines three constructors
A) Stringbuffer ()-reserves room for 16 character
B) Stringbuffer (int num)-accepts int and set the size
C) Stringbuffer (String str)-accepts string and assign room for 16 more characters.

STRING BUFFER
• For example,
String str = “Hello”;
StringBuffer stringBuffer = new StringBuffer(str);

Here, capacity of stringBuffer object would be 5 + 16 = 21.

STRING BUFFER
• For example,
StringBuffer stringBuffer = new StringBuffer(“Hello World”);
System.out.println(stringBuffer.length());System.out.println(stringBuffer.length());
System.out.println(stringBuffer.capacity());

This will print,1127

STRING BUFFER METHODS
1. Append ()used to concatenate string at the end of string buffer object.
Stringbuffer append (String str)
Stringbuffer append (int num)
Stringbuffer append (object obj)
2. charAt() and setCharAt()2. charAt() and setCharAt()
- Char charAt(int where)-index of the character is obtained.
- Void setCharAt(int where,char ch)-specifies the index of the character being set ,ch specifies new character .

STRING BUFFER METHODS
1. Delete and deleteCharAt()-used to delete a character.
Stringbuffer delete(int startindex,int endindex)
StringBuffer deleteCharAt(int loc)-delete the character at the index specified by loc.
2. ensureCapacity()-it is used to set the size of the buffer.2. ensureCapacity()-it is used to set the size of the buffer.
Syntax:
Void ensureCapacity(int capacity)
3.getChars()-used to copy a substring into an array.
Syntax:
Void getChars(int sourceStart,int sourceEnd,chartarget[],int targetstart)

STRING BUFFER METHODS
1. Insert()-insert one string into another.
I. Stringbuffer insert(int index, string str)
II. Stringbuffer insert(int index, char ch)
III. Stringbuffer insert(int index, object obj)
2. length() –used to find the length of the string 2. length() –used to find the length of the string buffer.
capacity()-used to find total allocated capacity of the buffer.
int length()
Int capacity()

1. Replace()- replaces one set of characters with another set inside a string buffer.
Syntax: stringbuffer replace(int startindex,intendindex,string str)
2. reverse()-reverse the character in the string buffer.

STRING BUFFER METHODS

2. reverse()-reverse the character in the string buffer.
Syntax: stringbuffer reverse()
3.setlegnth()-used to set the length of the buffer
Void setLengthrin(int len)
4.substring()-returns the substring of a string.
String substring(int startindex,int endindex)

STRING BUFFER METHODS
1. When to use String and when StringBuffer?
If there is a need to change the contents frequently,StringBuffer should be used instead of Stringbecause StringBuffer concatenation is significantlyfaster than String concatenation.

STRING BUFFER METHODS

STRING BUFFER METHODS

STRING BUFFER METHODS

A Vector class is Java’s basic list class.
 A list is an ordered collection of items.
The operations that can be performed on a list are:

• Creating a new list
• Adding an element to the list
• Removing an element from the list
• Finding an element from the list

Vector class

• Finding an element from the list
A list differs from an array in that a list can growwhereas the size of the array is fixed.
When an element from the List is removed, the spacethat was occupied by that element will be occupied byanother element, whereas when an element of anarray is removed, the space occupied by it will not beavailable for any other purpose and may go waste.

Vector Methods

CREATING VECTORS• Import vector class from the java.util package.
Import java.util.Vector;
To create vector ,use three steps
i) Declare variable to hold vector

Vector v;Vector v;
ii) Declare a new vector object and assign it to the vector variable
v=new Vector(); ex. v=new Vector(5);
iii) Store things in the vector

CREATING VECTORS

CREATING VECTORS

ACCESSING ,CHANGING&REMOVING VECTORS
• v.size();returns the current number of elements/current size of the vector.
• v.removeElementAt(0);used to delete element of the vector.
• trimToSize()used to shrunk the capacity.trimToSize() used to shrunk the capacity.
• V.elementAt(i)used to get a specific element form the vector.

The java.lang package includes a number of classes that “wrap” a primitive data type in a reference object.
These classes constitute the wrapper classes.
The wrapper classes provide object versions of the

Wrapper Classes

The wrapper classes provide object versions of the primitive data types.
These classes include methods for converting the value from one data type to another.
The wrapper classes are final.

Integer
Long
Byte
Float

Important Wrapper Classes

Float
Double
Character
Boolean
Void

The Number class is the super class for the objectwrappers for the int, long, float and double types.
Any class that expects an instance of a Number

Number Class

 Any class that expects an instance of a Numbermay be passed an Integer, Long, Float or Doubleclass.

The Integer class provides a wrapper for the int data type.
It contains methods for converting integers to strings and viceversa.
 The constructor takes either of the following form:

Integer - Class

 public Integer(int val)
 public Integer(String s) throws NumberFormatException
 In the second form, if the String contains non-numericcharacter, the NumberFormatException is thrown.
 This class includes methods for fetching information fromSystem properties.

class IntegerDemo
{

public static void main(String args[])
{

Integer i=new Integer(7);
Integer j=new Integer(5);
Integer k=new Integer(5) ;
System.out.println(“ Equivalent float Value is :”+ i.floatValue()) ;
System.out.println(“ Equivalent double Value is :”+ i.doubleValue()) ;

Example

System.out.println(“ Equivalent double Value is :”+ i.doubleValue()) ;
System.out.println(“ Equivalent byte Value is :”+ i.byteValue()) ;
System.out.println(“ Equivalent long Value is :”+ i.longValue()) ;
System.out.println(“ Equivalent String Value is :”+ i.toString()) ;
System.out.println(“ The objects i and j are equal”+ i.equals(j));
System.out.println(“ The objects i and k are equal”+ i.equals(k));
System.out.println(“ The objects k and j are equal”+ k.equals(j));
System.out.println(“ The int equivalent of string given in commandline:”+Integer.parseInt(a[0]));

}
}

The Long class provides a wrapper for the long datatype.
 It contains methods for converting long to strings andvice versa.The constructor takes either of the following form:

Long

public Long(long val)
public Long(String s) throws NumberFormatException
 In the second form, if the String contains non-numericcharacter, the NumberFormatException is thrown.
This class includes methods for fetching informationfrom System properties.

class LongDemo
{

public static void main(String a[])
{

Long i=new Long (7);
Long j=new Long (5);
Long k=new Long (5) ;
System.out.println(“ Equivalent float Value is :”+ i.floatValue()) ;
System.out.println(“ Equivalent double Value is :”+ i.doubleValue()) ;
System.out.println(“ Equivalent byte Value is :”+ i.byteValue()) ;

Example

System.out.println(“ Equivalent byte Value is :”+ i.byteValue()) ;
System.out.println(“ Equivalent int Value is :”+ i.intValue()) ;
System.out.println(“ Equivalent String Value is :”+ i.toString()) ;
System.out.println(“ The objects i and j are equal”+ i.equals(j));
System.out.println(“ The objects i and k are equal”+ i.equals(k));
System.out.println(“ The objects k and j are equal”+ k.equals(j));
System.out.println(“ The long equivalent of string given in command line:”+Long.parseLong(a[0]));

}
}

 The Byte class provides a wrapper for the byte data type.
 It contains methods for converting byte to strings and viceversa.
 The constructor takes any one of the following form:

public Byte(byte val)

Byte

public Byte(byte val)
public Byte(String s) throws NumberFormatException

 In the second form, if the String contains non-numericcharacter, the NumberFormatException is thrown.
 This class includes no method for fetching information fromSystem properties.

class ByteDemo
{

public static void main(String a[])
{

byte b=7,d=5,c=5;
Byte i=new Byte(b);
Byte j=new Byte(d);
Byte k=new Byte(c) ;
System.out.println(" Equivalent float Value is :"+ i.floatValue()) ;
System.out.println(" Equivalent double Value is :"+ i.doubleValue()) ;

Example

System.out.println(" Equivalent double Value is :"+ i.doubleValue()) ;
System.out.println(" Equivalent long Value is :"+ i.longValue()) ;
System.out.println(" Equivalent int Value is :"+ i.intValue()) ;
System.out.println(" Equivalent String Value is :"+ i.toString()) ;
System.out.println(" The objects i and j are equal"+ i.equals(j));
System.out.println(" The objects i and k are equal"+ i.equals(k));
System.out.println(" The objects k and j are equal"+ k.equals(j));
System.out.println(" The byte equivalent of string given in commandline:"+Byte.parseByte(a[0]));

}
}

The Short class provides a wrapper for the Short datatype.
 It contains methods for converting Short to strings andvice versa.
The constructor takes any one of the following form:

Short

The constructor takes any one of the following form:
public Short(Short val)
public Short(String s) throws NumberFormatException
 In the second form, if the String contains non-numericcharacter, the NumberFormatException is thrown.

class ShortDemo
{

public static void main(String a[])
{

short b=7,d=5,c=5;
Short i=new Short(b);
Short j=new Short(d);
Short k=new Short(c) ;
System.out.println(" Equivalent float Value is :"+ i.floatValue()) ;
System.out.println(" Equivalent double Value is :"+ i.doubleValue()) ;

Example

System.out.println(" Equivalent double Value is :"+ i.doubleValue()) ;
System.out.println(" Equivalent long Value is :"+ i.longValue()) ;
System.out.println(" Equivalent int Value is :"+ i.intValue()) ;
System.out.println(" Equivalent String Value is :"+ i.toString()) ;
System.out.println(" The objects i and j are equal"+ i.equals(j));
System.out.println(" The objects i and k are equal"+ i.equals(k));
System.out.println(" The objects k and j are equal"+ k.equals(j));
System.out.println(" The Short equivalent of string given in commandline:"+Short.parseShort(a[0]));

}
}

The Float class provides a wrapper for the float datatype.
The following constructors are supported by theFloat class.

Float

Float class.
public Float (float value)
public Float (double value)

public Float (string s) throws Number Format Exception

The Double class provides a wrapper for thedouble data type. This class supports thefollowing constructors:
public Double (double value)
public Double (string s) throws Number Format

Double

public Double (string s) throws Number Format Exception

The Character class provides a wrapper for the char data type.
 It contains methods for converting characters to numeric digits and vice versa,

Character

characters to numeric digits and vice versa, to check whether a given character is an alphabet, number and so on.
This class has a single constructor.

The Boolean class provides a wrapper for theboolean data type. It has two types of constructors.
public Boolean(boolean Value)
public Boolean(String str)

Boolean

public Boolean(String str)

The wrapper class Void is used for roundingout the set of wrappers for primitive types.

Void

This wrapper class has no constructor ormethod and contains only the TYPEattribute that is common to all the wrapperclasses.

Multithreading

Dr.T.Logeswari

Why do we need threads?
• To enhance parallel processing
• To increase response to the user
• To utilize the idle time of the CPU
• Prioritize your work depending on priority• Prioritize your work depending on priority

Example
• Consider a simple web server
• The web server listens for request and serves it
• If the web server was not multithreaded, the requests processing would be in a queue, thus increasing the response time and also might hang requests processing would be in a queue, thus increasing the response time and also might hang the server if there was a bad request.
• By implementing in a multithreaded environment, the web server can serve multiple request simultaneously thus improving response time

Creating threads
• In java threads can be created by extending the Thread class or implementing the Runnable Interface
• It is more preferred to implement the • It is more preferred to implement the Runnable Interface so that we can extend properties from other classes
• Implement the run() method which is the starting point for thread execution

Running threads
• Example

class mythread implements Runnable{
public void run(){

System.out.println(“Thread Started”);
}

}
class mainclass {class mainclass {
public static void main(String args[]){

Thread t = new Thread(new mythread()); // This is the way to instantiate a thread implementing runnable interface
t.start(); // starts the thread by running the run method
}

}

• Calling t.run() does not start a thread, it is just a simple method call.
• Creating an object does not create a thread, calling start() method creates the thread.calling start() method creates the thread.

States of Java Threads
• 4 separate states

– new: just created but not started
– runnable: created, started, and able to run
– blocked: created and started but unable to run – blocked: created and started but unable to run because it is waiting for some event to occur
– dead: thread has finished or been stopped

States of Java Threads

new
runnable

dead

start() stop(),
end of run method

new

blocked

dead
wait(),
I/O request,
suspend()

notify(),
I/O completion,
resume()

Controlling Java Threads
• _.start(): begins a thread running
• wait() and notify(): for synchronization

– more on this later
• _.stop(): kills a specific thread (deprecated)• _.stop(): kills a specific thread (deprecated)
• _.suspend() and resume(): deprecated
• _.join(): wait for specific thread to finish
• _.setPriority(): 0 to 10 (MIN_PRIORITY to

MAX_PRIORITY); 5 is default (NORM_PRIORITY)

Java Thread Scheduling
• highest priority thread runs

– if more than one, arbitrary
• yield(): current thread gives up processor so another of equal priority can runanother of equal priority can run

– if none of equal priority, it runs again
• sleep(msec): stop executing for set time

– lower priority thread can run

Synchronization
• Synchronization is prevent data corruption
• Synchronization allows only one thread to perform an operation on a object at a time.
• If multiple threads require an access to an • If multiple threads require an access to an object, synchronization helps in maintaining consistency.

Example
public class Counter{

private int count = 0;
public int getCount(){

return count;
} public setCount(int count){public setCount(int count){

this.count = count;
}

}
• In this example, the counter tells how many an access has been made.
• If a thread is accessing setCount and updating count and another thread is accessing getCount at the same time, there will be inconsistency in the value of count.

Fixing the example
public class Counter{

private static int count = 0;
public synchronized int getCount(){

return count;
}
public synchoronized setCount(int count){

this.count = count;this.count = count;
}

}
• By adding the synchronized keyword we make sure that when one thread is in the setCount method the other threads are all in waiting state.
• The synchronized keyword places a lock on the object, and hence locks all the other methods which have the keyword synchronized. The lock does not lock the methods without the keyword synchronized and hence they are open to access by other threads.

What about static methods?
public class Counter{

private int count = 0;
public static synchronized int getCount(){

return count;
} public static synchronized setCount(int count){

this.count = count;
}

}
• In this example the methods are static and hence are associated with the class object and not the instance.
• Hence the lock is placed on the class object that is, Counter.class object and not on the object itself. Any other non static synchronized methods are still available for access by other threads.

Common Synchronization mistake
public class Counter{

private int count = 0;
public static synchronized int getCount(){

return count;
} public synchronized setCount(int count){

this.count = count;this.count = count;
}

}
• The common mistake here is one method is static synchronized and another method is non static synchronized.
• This makes a difference as locks are placed on two different objects. The class object and the instance and hence two different threads can access the methods simultaneously.

Object locking
• The object can be explicitly locked in this way

synchronized(myInstance){try{wait();}catch(InterruptedException ex){
} System.out.println(“Iam in this “);notifyAll();}}• The synchronized keyword locks the object. The wait keyword waits for the lock to be acquired, if the object was already locked by another thread. Notifyall() notifies other threads that the lock is about to be released by the current thread.

• Another method notify() is available for use, which wakes up only the next thread which is in queue for the object, notifyall() wakes up all the threads and transfers the lock to another thread having the highest priority.

Further Reading
• http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html
• http://javarevisited.blogspot.com/2011/04/synchronization-in-java-synchronized.htmlnchronization-in-java-synchronized.html

Exception HandlingException Handling

Types of error in java
• Compile time error(forgetting semicolon in program)
• Run time error (main() has no arguments)arguments)
• Logical error(flaw in the logic of the program)

• An exception is an abnormal condition that arises ina code sequence at a run time.
• The Exception class defines the possible errorconditions that the program may encounter.
• It is an event ,which occurs during the execution ofa program ,that disturbs the normal flow of theprogram instructions.
Exceptions occurs when theExceptions occurs when the

 user is trying to open a file that does not exist
 network connection is disconnected
 Operands which are manipulated do not fall within aprescribed range
 class file is missing

• What is exception?
An exception is an error that occurs at run time

• What is an exception handling?
whenever exception handling occurs in the program, the concept of handling the class program, the concept of handling the class object and avoiding them from reaching back to JVM (nothing but exception handling). Java to deal with handling the error in an organized fashion is called exception handling

• How java handles exception?
java provides the exception handling constructs like try catch, try catch finally to manage run time errormanage run time error

Types of Exception
• In java, all classes are represented by classes.
• All exception classes are derived from a class called throwable
• The Exception are classified into two types• The Exception are classified into two types

– Exception
– Error

•Error and exception are subclasses of throwable
•Object class is the super class of Throwable class

Exception Hierarchy
Java.lang.Throwable

java.lang.error java.lang.Exception
java.lang.Error

It represents normally a series of non-executableIt represents normally a series of non-executablecode such as running out of memory or being unable tolocate a class.(stackOverflowerror)java.lang.Exception
It represents unusual conditions that arise in thecourse of program executions, such as reaching end offile, attempting to reference an array element outsidethe actual source of the array. (divide by zero)

Throwable is at the top of the exception classhierarchy.
All exception types are the subclasses of thebuilt-in class Throwable.
Throwable class has two subclasses thatpartition the exception into two distinctbranches.
One branch is headed by Exception. This classOne branch is headed by Exception. This classis used for exceptional conditions that userprograms should catch. This class createscustom exception types.
There is an important subclass of Exception,called Run-time Exception.

The other branch is topped by Error, whichdefines exceptions that are not expected to becaught under normal circumstances byprogram.
Exceptions of type Error are used by the JavaExceptions of type Error are used by the Javarun-time system to indicate errors having todo with the run-time environment, itself.Stack overflow is an example of such an error.

Runtime or unchecked exception

Checked exception
• The checked exception are checked at the compile time by the compiler and it compel to handle the and it compel to handle the exception in the program (IOException)

Types of Errors
An error may produce an incorrect output or mayterminate the execution of the program abruptly.
 It is therefore important to detect and manageproperly, all the possible error conditions in theIt is therefore important to detect and manageproperly, all the possible error conditions in theprogram.

Errors are broadly classified into two categories:
 Compile-time errors and
 Run-time errors

Compile Time Errors
• All syntax errors will be detected and displayed by theJava compiler and therefore these errors are known asCompile-Time errors. Whenever the compiler displaysan error, it will not create the .class file.
• Some of the compile time errors are:• Some of the compile time errors are:
 Missing semicolons
 Missing (or mismatch of) brackets in classes andmethods
 Misspelling of identifiers and keywords
 Incompatible types in assignments/initialization etc.

Run Time Errors
Some of the run-time errors are:
 Dividing an integer by zero.
 Accessing an element that is out of the bounds ofan array.an array.
 Trying to store a value into an array of anincompatible class or type.
 Passing a parameter that is not in a valid range orvalue for a method.

Keywords in Exception Handling
• Java exception handling is managed via five keywords: try, catch, throw, throws and finally.
• To handle a run-time error, simply enclose the code that requires to be monitored inside a try block.
• Immediately following the try block, a catch clause • Immediately following the try block, a catch clause that specifies the exception type that has to be caught is included

A general form of an exception-handling block
try{ // block of code to monitor for errors}catch(ExceptionType1 exOb){// exception handler for ExceptionType1}catch(ExceptionType2 exOb) {catch(ExceptionType2 exOb) {// exception handler for ExpectionType2} //. . .

finally{ // block of code to be executed before try block ends}

Exception Type Cause of Exception
ArithmeticException Caused by mathematical errors such asdivision by zero.
ArrayIndexOutOfBounds Caused by an array indexes.Exception
ArrayStoreException Caused when a program tries to store thewrong type of data in an array.wrong type of data in an array.
FileNotFoundException Caused by an attempt to access a Nonexistent file.

IOException Caused by general I/O failures, such asInability to read from a file.
NullPointerException Caused by referencing a null Object.
NumberFormatException Caused when a conversion between stringsand number fails.

OutofMemoryException Caused when there is not enoughmemory to allocate new object.
Security Exception Caused when an applet tries toperform an action not allowed bythe browser’s security setting.
StackOverflow Exception Caused when the system runs out ofstack space.stack space.
StringIndexOutOf Caused when a program attempts toaccess a nonexistentBoundsException character position

The following program includes a try block and a catch clause which processes the ArithmeticException generated by the division-by-zero error:
class Exc2{ public static void main(String args[]){int d,a;try{ // monitor a block of code.d = 0;a = 42/d;d = 0;a = 42/d;System.out.println("This will not be printed.");}catch (ArithmeticException e){ // catch divide-by zero errorSystem.out.println ("Division by zero");}System.out.println ("After catch statement.");}}

Multiple Catch statements
It is possible to have more than one catch statement in the catch block as illustrated:.try{statement; // generates an exception}catch (Exception-Type-1 e){{ statement; // processes exception type 1}catch (Exception-Type-2 e){ statement; // processes exception type 2}catch (Exception-Type-N e){ statement ; // processes exception type N}

Exception (contd…)
When an exception in a try block is generated, theJava treats the multiple catch statements like casesin a switch statement.
The first statement whose parameter matches withthe exception object will be executed and theremaining statements will be skipped.

Throw
 It is possible to throw an exception explicitly, using thethrow statement. The general form of throw is shownhere:

throw ThrowableInstance
 ThrowableInstance must be an object of typeThrowable or a subclass of Throwable.

There are two ways by which a Throwable object canbe obtained
 using a parameter into a Catch clause orcreating one with the new operator.

• The flow of execution stops immediately after thethrow statement; any subsequent statements arenot executed.
• The nearest enclosing try block is inspected to see ifit has a catch statement that matches the type ofexception. If it does find a match, control istransferred to that statement.

If not, then the next enclosing try statement is• If not, then the next enclosing try statement isinspected and so on.
• If no matching catch is found, then the defaultexception handler halts the program and prints thestack trace.

// Demonstrate throw.class ThrowDemo{ static void demoproc(){ try{ throw new NullPointerException("demo");throw new NullPointerException("demo");}catch(NullPointerException e){ System.out.println("Caught inside demoproc.");throw e; // rethrow the exception}}

public static void main(String args[])
{
try
{

demoproc();
}
catch (NullPointerException e)
{

System.out.println("Recaught: " + e);System.out.println("Recaught: " + e);
}

}
}
Output:
Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

Program description
• In this program, the class ThrowDemo has a method calleddemoproc() which uses a throw statement to throw aNullPointerException.
• The function itself provides a try and catch clause to handle theexception thrown.
• The catch clause after handling the exception, once again throws it.Therefore, whenever any function calls the function demoproc(), ithas to handle the exception thrown by the catch clause inside thedemoproc().
• Therefore, the main function encloses the call to the functiondemoproc() inside the try catch clause.

What is the difference between throw and throws
• The throws clause is used when the programmer does not want to handle the exception in the method and throw it out of method
• The throw clause is used when the programmer want to throw an exception explicitly and wants to handle it using catch block.
• Hence throw and throws are contradictory

finally blockWhen a finally block is defined, this is guaranteed to execute, regardless of whether or not an exception is thrown.
class FinallyDemo
{

// Through an exception out of the method.
static void procA()
{

try
{ System.out.println(“inside procA”);

throw new RuntimeException(“demo”);
}
finally
{

System.out.println(“procA-s finally”);
} } // procA

// Return from within a try block.static void procB(){ try{ System.out.println(“inside proB”);return;} finallyfinally{ System.out.println(“proB’s finally”);}} // procB

// Execute a try block normally.static void procC(){ try{ System.out.println(“inside procC”);}finally{ System.out.println(“procC’s finally”);}} // procCpublic static void main(String args[]){ try{ try{ procA();} catch (Exception e){ System.out.println(“Exception caught”);}procB();procC();} // main} //class

Applet Programming
• An applet is a java class that can be downloadedand executed by the web browser. It is a specifictype of java technology. An applet runs in theenvironment of the web browser.
• The applet can be executed by 2 methods:• The applet can be executed by 2 methods:

• Using HTML document
• Using appletviewer

Applet Programming
• APPLET=JAVA Byte Code + HTML
What is an Applet?
• Applet is a small application that is embedded in aHTML page , which is accessed and transportedHTML page , which is accessed and transportedover the internet, automatically installed into theclient machine and runs as part of a web page.
• Applets are great for creating dynamic andinteractive web application.

Using HTML Document
• Once an applet has been compiled, it is included in a HTML file using the APPLET tag.
• When the HTML file is loaded in the browser, the applet will be automatically executedthe applet will be automatically executed

/*
<applet code ="MyApplet" width=200 height = 60>
</applet>
*/

Description of Applet Tag
The APPLET tag is used to start an applet from both an HTML document and from an applet viewer. The syntax for the standard APPLET tag is shown here.<APPLET[CODEBASE = codebaseURL][CODE = appletFile][ALT = alternateText][ALT = alternateText][NAME = appletInstanceName][WIDTH = pixels HEIGHT = pixels][ALIGN = alignment][VSPACE = pixels] [HSPACE = pixels][<PARAM NAME = AttributeName VALUE = AttributeValue>][<PARAM NAME = AttributeName2 VALUE = AttributeValue>]…</APPLET>

CODEBASE
CODEBASE is an optional attribute that specifies the base URL of theapplet code, which is the directory that will be searched for theapplet's executable class file.

CODE
CODE is a required attribute that gives the name of the file containinguser applet's complied .class file. This file is relative to the code baseURL of the applet, which is the directory that the HTML file was in.

ALT
The ALT tag is an optional attribute used to specify a short textmessage that should be displayed.

NAME
NAME is an optional attribute used to specify a name for the appletinstance. To obtain an applet by name, use getApplet(), which isdefined by the AppletContext interface.

WIDTH AND HEIGHTWIDTH and HEIGHT are required attributes that give the size (inpixels) of the applet display area.
ALIGNALIGN is an optional attribute that specifies the alignment of theapplet with these possible values: LEFT, RIGHT, TOP, BOTTOM,MIDDLE, BASELINE, TEXTOP, ABSMIDDLE and ABSBOTTOM.
VSPACE AND HSPACEVSPACE AND HSPACEThese attributes are optional. VSPACE specifies the space, in pixels,above and below the applet. HSPACE specifies the space, in pixels, oneach side of the applet.
PARAM NAME AND VALUEThe PARAM tag allows the user to specify applet specific argumentsin an HTML page. Applets access their attributes with thegetParameter() method.

Using appletviewer
The applet code can be run using an appletviewer.In this case, the appletviewer is typed at thecommand prompt followed by the name of the javafile. The general format is:

Prompt> appletviewer filename.javaPrompt> appletviewer filename.java
The applet tag has to be included in the java fileitself and has to be commented (i.e. enclosedbetween /* and */).

Applet Hierarchy
• All applets are the subclasses of the class Applet.Applet class belongs to the package java.applet.
• All user-defined applet must import java.appletpackage.
• Applet extends from a class called Panel present in the • Applet extends from a class called Panel present in the package java.awt.
• This class provides support for Java's windows-based graphical user interface.
• Thus, Applet provides all of the necessary support for window-based activities.

java.lang.Object

java.awt.Component

java.awt.Container

Hierarchy of Applet class

java.awt.Container

java.awt.window java.awt.panel

java.awt.frame java.applet.Applet

The Applet Class
The class java.applet.Applet is a subclass ofjava.awt.panel.
An applet is a window-based program.
Applets are event driven.
Event driven means for every interaction from the user, aparticular action takes place in the applet.particular action takes place in the applet.
An applet will wait until an event occurs.
The AWT notifies the applet about an event by calling anevent handler that has been provided by the applet.
Once this happens, the applet must take appropriateaction and then quickly return control to the AWT

Applet differ from application

Java Applet with 5 methods

Life Cycle of an Applet
• The init() method provides the capability to loadapplet parameters and perform any necessaryinitialization processing.
• The start() method serves as the execution entrypoint for an applet, when it is initially executedand restarts the applet.
• The stop() method provides the capability to• The stop() method provides the capability tostop() an applet's execution when the Web pagecontaining the applet is no longer active.
• The destroy() method is used at the end of anapplet's life cycle to perform any terminationprocessing.

It is important to understand the order in which thevarious methods of the applet class are called. Whenan applet begins, the AWT calls the following methods,in the sequence:
1. init()2. start()3. paint()3. paint()
When an applet is terminated, the following methods arecalled:
1. Stop(), called when the applet is minimized.2. Destroy(), called when the applet is closed.

1. Java applications are designed to run the homogeneous and more secure area.
2. Java applets are designed to run the heterogeneous and unsecured environment
3. Applets are not capable of communicate 3. Applets are not capable of communicate to the server.
4. Not capable of reading and writing the users file system.
5. Applet – is a window based program & it works on event driven architecture

1.Writing an applet code
import java.applet.*;import java.awt.*;public class paint extends Applet{ public void paint(Graphics g)public void paint(Graphics g){g.drawString("welcome ",40,60);}}

2.Compile applet code &generate byte code

3.Create an HTML page

4.Execute using applet viewer

Writing and executing applet without HTML

Passing parameters to applet

PASSING PARAMETER TO APPLET

ALIGNING THE APPLET DISPLAY

DISPLAYING NUMERIC VALUE

GETTING INPUT FROM USER

Applet Display Methods
• Applets are displayed in a window and they use theAWT to perform input and output.
• To output a string to an applet, drawString() which is amember of the Graphics class is used.
• An object of Graphics class provides the surface forpainting.void drawString(string message, int x, int y)void drawString(string message, int x, int y)
• Here, message is the string to be output beginning atthe coordinate (x,y).
• In a Java window, the upper-left corner is location (0,0).
• To set the background color of an applet's window, usesetBackground().
• To set foreground color, use setForeground().

AppletContext and showDocument()
• The showDocument() method defined by the AppletContextinterface is used to allow an applet to transfer control toanother URL.
• AppletContext is an interface that lets the user to get theinformation from the applet's execution environment.
• Within an applet, once the user has obtained the applet'scontext, the user can bring another document into view bycontext, the user can bring another document into view bycalling showDocument().
• This method has no return value and throws no exception if itfails.
• There are two showDocument() methods.
• The method showDocument(URL) displays the document at thespecified URL.
• The method showDocument(URL, target) where target refers tothe location where the document is to be displayed.

Method Description
Applet getApplet(String appletName)

 Returns the applet specified by appletName if it is withinthe current applet context.
Enumeration getApplets()

 Returns an enumeration that contains all the appletswithin the current applet context.
Image getImage(URL url)Image getImage(URL url)

 Returns an Image object that encapsulates the imagefound at the location specified by url.
void showDocument(URL url)

 Brings the document at the URL specified by url into view.
void showStatus(String str)

 Display string given in ‘str’ in the status window.

Example
import java.awt.Graphics;
import java.awt.*;
import java.applet.Applet;
/*<applet code= “Rec.class” width=250 height=250></applet>*/
public class Rec extends Applet
{{

public void paint(Graphics g)
{

g.drawLine(10,10,60,50);
g.fillRect(100,10,60,50);
g.drawRoundRect(190,10,60,50,15,15);
g.fillRoundRect(70,90,140,100,30,40);

}
}

