Introduction to
Java Programming

T.LOGESWARI

What is Java

e Javais a programming language and a platform.

e Java is a high level, robust, secured and object-
oriented programming language.

* Platform: Any hardware or software environment
in which a program runs, is known as a platform.
Since Java has its own runtime environment (JRE)
and API, it is called platform.

Where it is used?

According to Sun, 3 billion devices run java. There are
many devices where java is currently used. Some of
them are as follows:

Desktop Applications such as acrobat reader, media
player, antivirus etc.

Web Applications such as irctc.co.in, javatpoint.com
etc.

Enterprise Applications such as banking applications.
Mobile

Embedded System

Smart Card

Robotics

Games etc.

Java Applications

 We can develop two types of Java programes:
— Stand-alone applications
— Web applications (applets)
— Enterprise Application
— Mobile Application

Types of Java Applications

1) Standalone Application

* |tis also known as desktop application or
window-based application.

* An application that we need to install on every
machine such as media player, antivirus etc.

 AWT and Swing are used in java for creating
standalone applications.

2) Web Application

* An application that runs on the server side and
creates dynamic page, is called web application.

* Currently, servlet, jsp, struts, jsf etc. technologies
are used for creating web applications in java.

3) Enterprise Application

* An application that is distributed in nature, such
as banking applications etc.

* |t has the advantage of high level security, load
balancing and clustering.

* Injava, EJB is used for creating enterprise
applications.

4) Mobile Application
* An application that is created for mobile devices.

* Currently Android and Java ME are used for
creating mobile applications.

Applets v/s Applications

* Different ways to run a Java executable are

Application A stand-alone program that can be
invoked from command line . A program that has
a “main” method

Applet A program embedded in a web page , to
be run when the page is browsed . A program
that contains no “main” method

* Application —Executed by the Java interpreter.
* Applet- Java enabled web browser.

Java is Compiled and Interpreted

Programmer

Notepad,
emacs,Vvi

Source Code

Text Editor iy

Java file

Hardware and
Operating System

Byte Code
Compiler) Intcrpreter
.class file
javac java
appletviewer

netscape

Programmer

Text Editor M—-

Notepad,
emacs,Vvi

Compiled Languages

.c file

Source Code

Object

Compiler

(

"ode

—-

.0 file

gce

Executable

Code
linker
a.out file

Total Platform Independence

JAVA COMPILER

(translator)

JAVA BYTE CODE

(same for all platforms)

J AVA INTERPRETER

(one for each dlfferent system)

- T\
y/ VN L \Wl

Windows 95 Macintosh Solarls Windows NT

Architecture Neutral & Portable

* Java Compiler - Java source code (file with

extension .java) to bytecode (file with
extension .class)

e Bytecode - an intermediate form, closer to
machine representation

* Ainterpreter (virtual machine) on any target
platform interprets the bytecode.

Getting Started with Java
Programming
* A Simple Java Application
* Compiling Programs

* Executing Applications

A Simple Application
Example 1.1

//This application program prints Welcome

//to Java!
package chapterl;

public class Welcome {
public static void main(String[] args) {
System.out.println ("Welcome to Javal!");

}
J

NOTE: To run the program,
install slide files on hard

disk. 13

Creating and Compiling Programs

Create/Modify Source Code

e On command line

— jJavac file.java

Source Code

Compile Source Code
i.e. javac Welcome.java

If compilation errors

Bytecode

Run Byteode
i.e. java Welcome

< Result >

If runtime errors or incorrect result

Executing Applications

e On command line

— java classname

Bytecode

l

l

Java
Interpreter
on Windows

Java
Interpreter
on Linux

l

l

Java
Interpreter
on Sun Solaris

15

Example

Javac Welcome. java
Java Welcome

output:...

Anatomy of a Java Program

Comments
Package
Reserved words
Modifiers
Statements
Blocks

Classes

Methods

The main method

17

Comments

In Java, comments are preceded by two slashes (//) in a line, or

enclosed between /* and */ 1n one or multiple lines.

*When the compiler sees //, it 1ignores all text after // in the same line.

* When it sees /*, 1t scans for the next */ and 1gnores any text between
/* and */.

18

Package

*The second line 1n the program (package chapterl;) specifies a
package name, chapterl, for the class Welcome.
* Forte compiles the source code in Welcome.java, generates

Welcome.class, and stores Welcome.class 1n the chapterl folder.

19

Reserved Words

*Reserved words or keywords are words that have a specific meaning to
the compiler and cannot be used for other purposes in the program.

* For example, when the compiler sees the word class, i1t understands
that the word after class 1s the name for the class.

*Other reserved words 1n Example 1.1 are public, static, and void.

20

Modifiers

Java uses certain reserved words called modifiers that specify the
properties of the data, methods, and classes and how they can be used.
* Examples of modifiers are public and static. Other modifiers are
private, final, abstract, and protected.

A public datum, method, or class can be accessed by other programs.

* A private datum or method cannot be accessed by other programs.

21

Statements

A statement represents an action or a sequence of actions.
*The statement System.out.println("Welcome to Java!") in the program
in Example 1.1 1s a statement to display the greeting "Welcome to

Java!" Every statement in Java ends with a semicolon (;).

22

Blocks

*A pair of braces in a program forms a block that groups components of a

program.

public class Test { < |
public static void main (String[] args) { éy (fass block
System.out.println ("Welcore to Java!'); Method block
} & |
S
1 &
S

Classes

*The class 1s the essential Java construct.

*A class 1s a template or blueprint for objects.

* To program 1n Java, you must understand classes and be able to write
and use them.

*For now, though, understand that a program 1s defined by using one or

more classes.

24

Methods

What 1s System.out.println?

It 1s a method: a collection of statements that performs a sequence of
operations to display a message on the console.

* It can be used even without fully understanding the details of how it works.
*It 1s used by invoking a statement with a string argument.

*The string argument 1s enclosed within parentheses. In this case, the

argument 1s "Welcome to Java!" You can call the same println method with a

different argument to print a different message.

25

main Method

*The main method provides the control of program flow. The Java interpreter
executes the application by invoking the main method.
*The main method looks like this:

public static void main(String[] args) {

// Statements;

b

26

Program Processing

* Compilation

javac hello.java
results in Hellointernet.class

e Execution

java HelloInternet
Hello Internet
#

Summary

class keyword is used to declare a class in java.

public keyword is an access modifier which
represents visibility, it means it is visible to all.

static is a keyword, if we declare any method as
static, it is known as static method.

— The core advantage of static method is that there is
no need to create object to invoke the static method.

— The main method is executed by the JVM, so it
doesn't require to create object to invoke the main
method. So it saves memory.

void is the return type of the method, it
means it doesn't return any value.

main represents startup of the program.

String[] args is used for command line
argument.

System.out.printin() is used print statement.

 What happens at compile time?

* At compile time, java file is compiled by Java
Compiler (It does not interact with OS) and
converts the java code into bytecode.

Java Code 4+ Compiler Byte Code

Simple.java Simple.class

 What happens at runtime?

At runtime, following steps are performed:

class file

l java

classloader

i

Bytecode werifier

l

Interpreter

!

Runtime

l

Hardware

Classloader: is the subsystem of JVM that
is used to load class files.

Bytecode Verifier: checks the code
fragments for illegal code that can violate
access right to objects.

Interpreter: read bytecode stream then
execute the instructions.

INTRODUCTION

Dr.T.Logewari

e JVM - JVM (Java Virtual Machine) is an
abstract machine that enables your computer
to run a Java program.

* JRE - JRE (Java Runtime Environment) contains
JVM, supporting libraries, and other
components to run a Java program. However,
it doesn't contain any compiler and debugger.

e JDK - JDK (Java Development Kit) contains JRE
and tools such as compilers and debuggers for
developing Java applications.

What is JVM?

* JVM (Java Virtual Machine) is an abstract

machine that enables your computer to run a
Java program.

* When you run the Java program, Java
compiler first compiles your Java code to
bytecode. Then, the JVM translates bytecode
into native machine code (set of instructions
that a computer's CPU executes directly).

* Java is a platform-independent language. It's
because when you write Java code, it's
ultimately written for JVM but not your
physical machine (computer).

* Since, JVM executes the Java bytecode which

is platform independent, Java is platform-
independent.

NEVE Java Java JVM Machine CPU
Program [a@ Bytecode Code

What is JRE?

* JRE (Java Realtime Environment) is a software
package that provides Java class libraries,
along with Java Virtual Machine (JVM), and

other components to run applications written
In Java programming.

* JRE is the superset of JVM.

JRE

+ Class Libraries

What is JDK?

JDK (Java Development Kit) is a software

development kit to develop applications in
Java.

When you download JDK, JRE is also
downloaded, and don't need to download it
separately.

In addition to JRE, JDK also contains number
of development tools (compilers, JavaDoc,
Java Debugger etc).

JDK

JRE + Compilers + Debuggers ...

Relationship between JVM, JRE, and

JDK.
JDK

JVM

Class Libraries

Compilers

Debuggers

JavaDoc

Command Line Arguments

* A java application can accept any number of
arguments from the command line

* The user enter command line argument when
invoking the application and specifies them
after the name of the class to be run

Why they used

* To turn on debugging input, to indicate a file
name to read or write from, or for any other

information that might want our java program
to know.

* Java application are stand alone program, it is
useful to be able to pass argument or option
to that program to determine how the
program is going to run

* |n this case we pass argument by using
command line arguments

Find Factorial of Given number
using CLA

Class factorial {
Pubic static void main(String args[]){

Int num = Integer.parselnt(args[0]);
//take argument as command line
Int result =1

While(num>o0){

Result = result *num;

Num--;

J

System.out.printIn(“factorial of given

number:”+result);

J

}
Output

Java factorial 4
Factorial of given number is : 24

Java Variables

e Avariable is a location in memory (storage
area) to hold data.

* To indicate the storage area, each variable
should be given a unique name (identifier).

How to declare variables in Java?

int speedLimit = 80;
Here, speedLimit is a variable of int data type,
and is assigned value 80.

Meaning, the speedLimit variable can store
integer values.

* Java is a statically-typed language. It means
that all variables must be declared before they
can be used.

Rules for Naming Variables in Java

Java programming language has its own set of
rules and conventions for naming variables.

Variables in Java are case-sensitive.

A variable's name is a sequence of Unicode
letters and digits. It can begin with a
letter, S or .

However, it's convention to begin a variable
name with a letter. Also, variable name cannot
use whitespace in Java.

Variable Name

Remarks

speed

_speed
$speed
speed
spe ed

spe’ed

Valid variable name

Valid but bad variable name

Valid but bad variable name

Valid variable name

Invalid variable name

Invalid variable name

4 types of variables in Java
programming language:
Instance Variables (Non-Static Fields)
Class Variables (Static Fields)

Local Variables

Parameters

Java Primitive Data Types

Java Keywords

* Keywords are predefined, reserved words
used in Java programming that have special
meanings to the compiler. For example:

Int score;

* Here, intis a keyword. It indicates that the
variable score is of integer type (32-bit signed
two's complement integer).

* You cannot use keywords like int, for, class etc
as variable name (or identifiers) as they are
part of the Java programming language syntax.

Here's the complete list of all
keywords in Java programming.

abstract
case
continue

enum

for

instanceof
new

return

switch

transient

Java Keywords List

assert
catch
default

extends

goto

int
package

short

synchronized

try

boolean
char
do

final

interface
private

static

this

void

break
class
double

finally
implements

long
protected

strictfp
throw

volatile

byte
const
else

float
import

native
public

super
throws

while

Java identifiers

* |dentifiers are the name given to variables,
classes, methods etc.

 Consider the above code;
Int score;

* Here, score is a variable (an identifier). You
cannot use keywords as variable name. It's
because keywords have predefined meaning.
For example,

int float;

Rules for Naming an ldentifier
dentifier cannot be a keyword.
dentifiers are case-sensitive.

t can have a sequence of letters and digits.
However, it must begin with a letter, S or .
The first letter of an identifier cannot be a
digit.

It's convention to start an identifier with a
letter rather and S or .

Whitespaces are not allowed.

Similarly, you cannot use symbols such
as @, #, and so on.

Operators

* Operators are special symbols (characters)
that carry out operations on operands
(variables and values).

* For example, + is an operator that performs
addition.

Arithmetic Operators

* Arithmetic operators are used to perform
mathematical operations like addition,
subtraction, multiplication etc.

Operator Meaning

Addition (also used for string

* concatenation)

- Subtraction Operator

* Multiplication Operator
/ Division Operator

% Remainder Operator

class ArithmeticOperator

{

public static void main(String[] args)
{

String start, middle, end, result;
start = "Talk is cheap. ";

middle = "Show me the code. ";
end = "- Linus Torvalds";

result = start + middle + end;
System.out.printin(result);

ASSIGNMENT OPERATORS

a '_"——-IH'H LR Tt 1

The assignment operotor is the smgle equal sign, =. This helmwaur uf assignment
operator 15 similar to other programming languages like C and C++.

The general syntax is;

var = expression;
¥r L
¢ Examples of the assignment operator
int x=10;
intyz,
y=10420-5;
2=y-10,

e The assignment operator allows craahng a chain of assignments. For
example, consider the below code:

intx y, z;
X=y=z=100) Ksetx, vy and zto 100

Assignment Operator

* Assignment operators are used in Java to
assign values to variables. For example,
Int age; age = 5;

 The assighment operator assigns the value on
its right to the variable on its left. Here, 5 is
assigned to the variable age using = operator.

Class AssignmentOperator

{

public static void main(String[] args) oyput
{

int numberl, number2; 5

// Assigning 5 to numberl 5
numberl =5;

System.out.printin(numberl);

// Assigning value of variable number2 to numberl

number2 = numberl;
System.out.printin(number2);

11

The shorthand assighment
operator

* The operator perform shortcut in common
programming operation

* |tis also called compound assighment
operator

* Syntax

varl operator = var2

Java Assignment Operators

operator Example Equivalent to

+= X+=5 X=X+5
-= X-=5 X=X-5
*= X *=5 X=X*5
/= X /=5 Xx=x/5
%= X %= 5 X=x/5
<<= X<<=5 X=Xx<<5
>>= X>>=5 X=X>>5
&= X &=5 X=X&5

N= XN=5 X=x"5

Unary Operators

* Unary operator performs operation on only
one operand.

operator Meaning

Unary plus (not necessary to use since numbers are

+ i : L

positive without using it)
- Unary minus; inverts the sign of an expression
++ Increment operator; increments value by 1

-- decrement operator; decrements value by 1

Logical complement operator; inverts the value of a
boolean

UNARY OPERATORS

e
+ The "+ ﬂperatur refers to the int a=+10;
positive value int b= +a;
The "' operator refers to the inf a=-10;
negative value int b=-g;
14 Increment Operator - o increase the int a=10;
value of operand by 1 - a |
- Decrement Operator - to decrease the inta=10;
value of operand by 1 e
-3

Unary plus

class UnaryOperator {

public static void main(String[] args)

{ double num
System.out.
System.out.
System.out.
System.out.

oer =5.2;
orintin(number++);
orintin(number);
orintIin(++number);

orintin(number); } }

Output
5.2
6.2
7.2
7.2

When System.out.printin(number++); statement is
executed, the original value is evaluated first.

The number is increased only after that. That's why
you are getting 5.2 as an output.

Then, when System.out.printIn(number); is
executed, the increased value 6.2 is displayed.

However, when System.out.printIn(++number); is
executed, number is increased by 1 first before it's
printed on the screen.

Equality and Relational Operators

The equality and relational operators
determines the relationship between two
operands.

It checks if an operand is greater than, less
than, equal to, not equal to and so on.

Depending on the relationship, it results to
either true or false.

Equality and relational operators are used in
decision making and loops

Operator

Description

equal to

not equal to

greater than

less than

greater than or
equal to

less then or equal
to

Example

5 == 3 is evaluated
to false

5 I=3 is evaluated
to true

5> 3 is evaluated
to true

5 < 3 is evaluated
to false

5 >=5 s evaluated
to true

5 <=5 s evaluated
to triie

class RelationalOperator ~ Output

number2 is greater than number1.

{ public static void main(String[] args)
{
int numberl =5, number2 = 6;

if (numberl > number2) {
System.out.printin("numberl is greater than
number2.");

} else

{ System.out.printin("number?2 is greater than
numberl.");

88

type comparison operator

* [n addition to relational operators,
there is also a type comparison
operator instanceof which

compares an object to a specified
type. For example,

INSTANCE OF OPERATOR

(Object refemm mnﬂble) mtaucenf (nhm!mlerfﬂﬂe type) |

If the object reforred by the variable on the left side of the operator passes the IS-
Acheckforthedassﬁnterfncetypeonthenghtmdethenthemﬂtwﬂlbeh'ue

Following is the example:

String name = “Srikanth™;
haolean result = name instanceof String;
If This will relurn true since name is type of String

In the above example, we have created string ohject and reference variable is

name. String is a class m Java. [fthereferenuevamblemftypeStrmg then
result 1s true,

class instanceofOperator

{

public static void main(String[] args)
{ String test = "asdf";

boolean result;

result = test instanceof String;
System.out.println(result);

b}

Logical Operators

* The logical operators || (conditional-OR)

and && (conditional-AND) operates on
boolean expressions.

* Here's how they work.

Operator

& &

Description

conditional-
OR; true if
either of the
boolean
expression
IS true

conditional-
AND; true if all
boolean

expressions
are friie

Example

false | | trueis
evaluated
to true

false && true is
evaluated to
false

class LogicalOperator
{ public static void main(String[] args)

{int numberl =1, number2 =2, number3 =9;
boolean result;

// At least one expression needs to be true for
result to be true

result = (humberl > number2) || (humber3 >
numberl);

// result will be true because (hnumberl >
number?2) is true

System.out.printin(result);

// All expression must be true from result to be
true

result = (numberl > number2) && (number3 >
numberl);

// result will be false because (number3 >
numberl) is false

System.out.printin(result);

' Output

true
false

* Which operator are called short
circuit logical operator?

&& and || are short circuit
operator

* What type of values can be used
as operands of the logical
operator?

The logical operator must have
operands of type boolean

What I the difference between normal ogial operators (& and) and short
elreltloglea operators (Aand |7~

0 Using 68, 1 the ot id ofthe exprsion i e, the et exvesion s asmed t e ol

(Ehe vl of the igh side doestmatte) 50 the etpresion refums felse, and the right side
ofthe expresion s never evalnated,

0 Ustng & both sides ofthe expreseion are evaluated

0 Using | fthe eft e of the expression it he ente expresson f ssumed o e e

(e vlue oftheight side coesn't matter), o the expresion return tue, and the rght side
of the expression f never evaluated

¢ Using |, both sices ofthe expression are evaluate

Ternary Operator

* The conditional operator or ternary
operator ?: is shorthand for if-then-
else statement.

* The syntax of conditional operator is:
variable = Expression ? expressionl : expression2
Here's how it works.

* |f the Expression is true, expressionl is assighed
to variable.

* |f the Expression 1is false, expression2 is
assigned to variable.

class ConditionalOperator

{ public static void main(String[] args)
{int februaryDays = 29;

String result;

result = (februaryDays == 28) ? "Not a leap year
. "Leap year";

System.out.printin(result);

1y Output
Leap
year

Bitwise and Bit Shift Operators

Operator

ny

<<

>>

>>>

Description

Bitwise Complement
Left Shift

Right Shift

Unsighed Right Shift
Bitwise AND

Bitwise exclusive OR

Bitwise inclusive OR

Additional Operator

Semicolon :
Curly bracket{}
Parentheses()
Square bracket[]
Comma,

Single quote’
Double quote™

DOT OPERATOR

The dot operator () is used to access the instance variables and metheds of class
using an object. |

Example:

dog.age
dog.bark();

NEW OPERATOR
The new operator s used to create objects, that is, instances of classes and arrays.

Example: Animal dog-new Anma()

Java Expressions

* Expressions consist
of variables, operators, literals and
method calls that evaluates to a single
value.

* let's take an example,

* int score; score =90;Here, score =90 is
an expression that returns int.

Double a=2.2, b = 3.4, result;
result=a+b-3.4;

Here, a + b - 3.4 is an expression.

if (humberl == number2)
System.out.printin("Number 1 is larger than
number 2");

Here, numberl == number?2 is an expression
that returns Boolean.

Similarly, "Number 1 is larger than number 2" is
a string expression.

Precedence of Arithmetic Operator

intmylnt=12-4* 2;

What will be the value of mylInt? Will it be (12 -
4)*2, thatis, 16? Or it will be 12 - (4 * 2), that
is, 47

* When two operators share a common

operand, 4 in this case, the operator with the
highest precedence is operated first.

* |n Java, the precedence of * is higher than
that of -. Hence, the multiplication is

performed before subtraction, and the value
of mvint will he 4.

Operators

postfix increment and
decrement

prefix increment and
decrement, and unary

multiplicative

additive
shift
relational

equality

Precedence

++ --

++ -+ -~

* [9%
4 -
<LK >> >>>

< > <= >= instanceof

bitwise AND

bitwise exclusive OR
bitwise inclusive OR
logical AND

logical OR

ternary

assignment

Example: Operator Precedence

class Precedence

{ public static void main(String[] args)
{inta=10,b =5, c=1, result;

result = a-++c-++b;

System.out.printin(result);

output will be:
} 5

* The operator precedence of prefix ++ is higher
than that of - subtraction operator.

* Hence,
* result = a-++c-++b;is equivalent to
result = a-(++c)-(++b);

Associativity of Operators in Java

* |f an expression has two operators with similar
precedence, the expression is evaluated
according to its associativity (either left to right,
or right to left). Let's take and example.

a=b=c;
Here, the value of c is assigned to variable b. Then
the value of b is assigned of variable a. Why?

It's because the associativity of = operator is
from right to left.

Operators

postfix increment
and decrement

prefix increment
and decrement,
and unary

multiplicative
additive

shift

relational

Precedence

++ --

++ -+ -~ |

* [9%
-|-_
<LK >> >>>

< ><=>=|nstance
of

Associativity

left to right

right to left

left to right
left to right

left to right

left to right

equality == |= eft to right

oitwise AND & eft to right
Co)il’;wise exclusive left to right
bitwise inclusive | left to right
OR

logical AND && left to right
logical OR | | left to right
ternary ? right to left

= 4= -

assignment = *= [= %= &= "= left to right

MATHEMATICAL FUNCTIONS

To make the programmers life essiar, the Math class prwi:iﬂs | numher usel'il

methods. All Math methods are called by this syntax. Math.method{parameters)
Note:

o The Math class s par 0f Javidang package

o dineedf .jﬁ 1 I Jataang packace, the Math clss need na be imported, Th ang
package i default for al the prograps,

absnlure vahee of X
rounds x tothe soallest integer not less
thanx |

| exponential method

triganometric cosing of 2 (x in radians} |

rounds x 10 the largest integer nok greates
thanx

rarural logarithm of 2 (hase g)

Jarger value of x 2ed ¥
senaller value of g and y

3|J5|:_:.:'.1'_}:| 1523, Fibs[ﬂ 0 ..":iE|:'i[.J 7w

el 9.2) 15 10.Geml] 9.8) 159,10

[cos(0.0)5 1.8

|ewp{ 1.0)is271828exp{ 10) i¢7 38906

floor(3.2) is9.0flaar] 9.8 i5-10.0

logf Math E) i5 | Do Marh E * Math.E] 120
max(23, 12.7)5 12 Toreae{ -2.3, 127 J s 2.3
min(2.3, 117 }is 2. 3mun(-2.3, 137 pu 127

¢ rased to the powery 1.2, x¥)
triponometric sine of ¥ {x in radians)

sdquare roos of &

| tnganometric tangel ofx(xin n-:".lm]

[JEI'iI:I.l:-, 7.0) 15 128 Opow(9.0, 05)28 3.0
an(0.0) 0.0
sqe| 9005 15 30.0

{0 'E']: 00

Classes and Object

Dr.T.Logeswari

Class

* All java programs activity occurs within a
class

* Aclassis a template that define the form
of an object.

* |t specifies both data and code that will
operate on that data

 Java uses a class to construct object
* Object are instances of a class

Class Definition

A class contain data member and methods
 Data member(instance variable)

— These variables that store data items .they are
also referred to as fields or member variables of a
class

e Methods

— These define the operation you can perform for
the class

Definition of class and object

A class is a template that define the form of an
object

A class is a generic template for creating
object

Class = data + methods

A object is an instance of a class

Defining a class

* Aclassis created by using the keyword class

[access specifier] [class modifier] class Class
Name[extend Super ClassName][implements
interfacelist]

{

variable declaration

‘method declaration]

J

 The element between the pair of square
bracket[] are optional

* The access modifier specifies who can
access this class

* The class modifier specify the behavioral
restriction on this class

* Class then followed by class name

* The class may or may not contain
variable declaration or method
declaration

Adding variable to class
* We can declare the variable inside the

CiaSS

e The variable inside the class are of two
types

— The class variable and instance variable

* The class variable will always have the
modifier static in front of them

 Example
Static int age = 30;

e The same variable defined instance variable
would be

Example
Int age =30;

Adding method to class

* The methods are function that
manipulate the data defined by the class
and in many cases provide access to that
data

* The other part of the program will
interact with a class through its methods

* The method will perform some task

— A method contains one or more statement.
In well written java code each method
perform only one task

* |n general we can give a method whatever
name we like. However the main() is reserved
for entry point for program execution

 We should not use java keyword for method
names

* The general form

[modifier]return type method-name(parameter-
list)

{
//body of method

J

Return type — it specifies the type of data
returned by the method (any valid data type)

— If does not return a value then return type must
be void

Method — the name of the method is specified
by name. this can be legal identifier

Parameter-it is variable that receive the value
of the argument passed to the method when
it is called

Modifier- it is a list of method modifier that
declare various attributes of method

Creating Object

A object is created by instantiating a class

The process of creating an object of a class is
called as instantiation and created object is
called as an instance

To create a new object java uses the keyword
new

The object are created using new operator
with the name of the class

* The general form

<class name><reference-variable>= new<class
name>([arguments])

Class name — the name of the class
Reference variable — it can refer to an object
New — operator to create an object
Argument - optional

Accessing Class Member

* We can access the member of the class using
dot operator

* The dot operator links the name of the object
with the name of a member

* The general form
to access variable = object.variable
to access methods = object.methods()

Constructor

New object is created, the garbage value will
be stored in variable initially.

Accessing these value leads some unwanted
result

To avoid we use member function such as
getdata() and setdata() to provide initial value
of object.

But the initialization can be done only after
creating the object

e Therefore the mechanism to initialize an
object during its creation using special
member function known as constructor

Constructor

If we want to set the default values for
instance variables at the time of creation of an
object, then we should use constructor

A constructor initialize an object when it is
created.

It has the same name as its class name
It have no explicit return type

We will use constructor, to give initial values
to the instance variable defined by the class

A class have constructor, whether we define
one or not, java automatically provides
default constructor that initialize all member
variable to zero

The constructor are of two types

Constructor with no argument(default
argument)

A

Constructor with arguments(parameterized
constructor

A(int a){}

* The constructor can be overloaded.
* Example
A(inta){} A(byteb){} A(longl){}

The constructor are having the same name and
same number of argument but different type
of argument

Default Constructor Parameterized constructor

The default constructoris Parameterized Constructor
useful to initialize all object is useful to initialize each

with same data object with different data
It does not have any It will have 1 or more
argument argument

When data is not passed at When data is not passed at
the time of creating an the time of creating an
object, default constructor object, parameterized

will be called constructor will be called

The constructor is used to
initialize the instance
variable of class

A Constructor name
should always be same as
class name

A constructor is called at
the time of creating an
object

A constructor is called only
once per object

A constructor is called and
executer automatically

A method is used for any
general purpose task like
calculation

A method name and class
name is same or different

A method can be called
after creating the object

A method can be called
any number of times on
the object

A method is executed only
when we want it

Using this Keyword

* this refers to the current object

* Whenever it is required to point an object
from a functionality which is under execution
then use this keyword

* |t always points to an object that is executing
the block in which this keyword is present

The use of this is to call constructor from
another constructor, specifically one in the
current class

The process of calling constructor from other
constructor is called constructor chaining

The constructor call should be the first
statement in the constructor (example)

The second function of this is to avoid
namespace conflict between a methods or
constructor parameter list and its variable

Method Overloading

* |n java, two or more methods within the same
class can have the same name but with
different number of arguments and type of
arguments. The method are said to be
overloaded and the process is referred to as
method overloading

Method overloading is one of the ways that
java implements polymorphism

* Each method has a signature (method, number
of arguments and type of arguments)

 The method overloading is not based on the
return type

* One method to overload another, the type or
number of argument must be different

* The below method are overloaded
oublic void aMethod(string s){}
oublic void amethod(){}

oublic void amethod(int i, string s){}
public void amethod(inti, int j){}

All the above method are unique within one class
because each of them has different signature

* What is polymorphism?

Defining more than one
functionality with the same name is
nothing but a polymorphism

* What are the types of
polymorphism?

two types — compile time(static)
-- Run time(dynamic)

 What is compile time or static
polymorphism?
Defining more than one functionality

with the same name but with different
arguments in the same class is known as

static polymorphism

* How static polymorphism is achieved in
java?
It is achieved using method overloading

Static variables and methods

A class member must be accessed through an
object of its class

But it is possible without creating an object
create a class member

The keyword is static

Keyword can be used in three scenarios
— Static variables

— Static methods

— Static block of code

Static variables

The instance variable are non static and it is
part of an object

The static variables are special type of
variables that are not associated with an
object, they associated with class

The static variables are also called as class
variables

It can be accessed without an object

Declaring static variables

class staticDemo

int x,y;
Static int z;

}

You can directly accessed by the class name and
doesnot need any object

Syntax
<class-name>.<variable-name>

Static methods

The methods can be declared as static

A static method is associated with a class rather
than the instances

The static methods are also called as class
members

The most common example of a static member is
main()

The main() is declared as static because it must
be called by the operating system when our
program begin

Declaring static methods

class StaticDemo
{

int x,y;
Static int z;
Void static method1()
{
System.out.printin(z);
}
}

Static and non static blocks

* |n real time scenarios block are used to provide
information regarding the project(ie version,
copy right, name of the company developed the
project) this is the use of static block

* |f we have many constructor in a class and if
every constructor has some common statement.
Then instead of repeating those statement in
each constructor, we place in non static
block(avoid duplication of code)

INHERITANCE

INHERITANCE

e Java classes can be reused in several ways. Reusing
class can be accomplished by inheritance.

 The mechanism of deriving a new class from an old
one is called inheritance.

* The already existing class from which a new class is
created is known as the base class or super class or
parent class and the newly created class is called
the subclass or derived class or child class.

,,;,- . What is an Inheritance? What is the use of 17

Inheritance can be defined as the process of acquiring properties of one object from
"U other obfect. The important use of an inheritance is 4 eode reusability and achimng
pulymnrphhm

In the language of java, a class that is
inherited is called a super class

The class that does the inheriting is called
subclass

A subclass is a specialized version of a super
class

It inherits all of the variable and method
defined by the super class and add its own,
unigue variable and methods

TYPES OF INHERITANCE

There are different types of inheritance like:

o Single inheritance (only one super class)
o Multiple inheritance (several super classes)

o Hierarchical inheritance (one super class,
many subclasses)

o Multilevel inheritance (Derived from derived
class)

¢ Single Inheritance: The one clase extends from another elass

Example: A
1

B

e Multilevel Inheritance: one class extending another class as in a
hierarchical structure is termed as multilevel inheritance.

Example : A

e Hierarchical Inheritance: Many classes extending from single super
class. One super class and many sub-classes.

Example : A !

5] (] (1)

o Multiple Inberitance: The one class extends from more than one class

Bxample

The dava supports an
- support mul

does no

¢, multilevel, and hierarchical inheritanc.

inheritance, The multiple mheritance will be

achieved in different way by using Interfaces

gy T A i AT H

Em gle Inhentance | class A |
class B extends A

Muliilevel Inheritance | class A
| class B extends A
_ ___ ‘lassCextendsB

;Hierar-:himl [nheritance class A
? class B extends A

class C extends A
class D e:l:tends A

Mlﬂtlple II‘I]'IEI'lt-E.[lﬂE class A ext&nds B C J"J" Nﬂt allnwed

—~ Which keyword s wied for Eaheritanee?
¢ "’; Extends keyword will be used to create subclasses.
o Wlli'-'h {nheritance fs not supported in Java?

Multlple Inhentam:e

Defining SubClass

e Java support inheritance by allowing one class
to incorporate another class into its
declaration

* This is done by using extends keyword

* The subclass adds to (extends) the superclass

* The general form is

class < subclass name > extends <superclass> {

<body of the class: method and variable>}

Overriding Methods

When we create a subclass of a class, it
inherits behavior of the original class

The subclass can reuse this inherited behavior.

If you want to modify some of the inherited
behavior to match the specialized behavior it
Is supposed to implement.

If you modify the behavior by redefining the
inherited method in the subclass

* This redefining is popularly known as method
overriding.

* The method in the super class is called as
overridden method

* The method in the subclass is called overriding
method

example

Consider a class camera and its subclass
SLRcamera.

The camera class has a shoot() method
implementing basic photographying.

The subclass SLRcamera is specialized camera
needing more adjustment while shooting

So therefore, it is likely to redefine the
shooting behavior

Class camera {
Void shoot() {

// common code for all cameras

J
J

Class SLRcamera extends camera {
Void shoot() {
// very specific code for SLRcamera

METHOD OVERRIDING

»In a class hierarchy, when a method in a subclass
has the same name and type signature as its
methods in super class then the method in the
subclass is said to be overriding.

Example

class Base

{
Base()

{

System.out.printin("Constructor of super class");

}
void funi()

{
System.out.printIn("Function inside Super class is
called");

}
}

class Sub extends Base

{
Sub()

{

System.out.printIn("Constructor of sub class");

}
void funi()

{
System.out.printIn("Function inside Sub class is called");
}

}

class MethodOverloadingDemo

{

public static void main (String args[])
{

Sub s=new Sub();

s.funi();

}
}

Note:

* Whenever u create an object
of a base class,

—it will call the super class
constructor first

—Then the sub class constructor
will be called and finally

—The functions invoked will be
called based on the definition

T L St T, PPN SETLGR! RSP e e, o

What is method overriding?

%) '= The process of overriding the method present in superclass in subclass is called

method overriding. The method should have same name, same signature, and same
return type.

What are the rules of method overriding?

¢ The method must have same method name as the method in the superclass, In addition, the type
and order of arguments must be same.

o The overriding method must have same return type as the overridden method

o The access modifiers in subelass but they must be less vestrictive than the original methed in
super class.
o The overridden method may not throw any checked exceptions at all. If it throws, the

exception must be either same as the exception thrown by the superclass method or the
exception must be a subclass of the exception thrown by the superclass method.

e We cannot override a final method of superclass
How dynamic polymorphism is achieved in Java?
It is achieved using method overriding.

What is dynamie polymorphism?

The dynamic polymorphism is the binding of method call to the method body will happen at
runtime. |

Method Overloading Method Overriding

Any access modifier can be Overriding methods

used

Signature has to be
different

Which method to be called
will be decided at the time
of compilation

Method can be static or
non static

There is no limit on

number of overloaded
methonds a class can have

cannot be more restrictive
than overridden method

Signature has to be the
same

Which method to be called
will be decided at the time
of runtime based on type
of object

The static methods don’t
participate in overriding

Each parent class method

may be overridden at most
once in anv siih clsaa

SUPER KEYWORD

* The super keyword is used to refer super class
object

* |tis used for the following purpose

—To call superclass method from subclass. If both

subclass and superclass contain the same
method. That is when the methods are
overridden

—If subclass and superclass contain the same
variable, then we can access the superclass
variable using super keyword

—super is used to call superclass constructor
explicitly

 What are the rules of using super?

—The super should be the first statement
inside the constructor

—The super and this cannot be used
together

—The super cannot be used inside static
methods

—|f we do not write super, then java
orovides the super() by default

This ____ Swer

It refer to current It refer to superclass
object object

It is used to call the It is used to call the
constructor of same constructor of

class superclass

It is used to It is used to

differentiate between differentiate between
instance variable and instance variable of
local variable of same subclass and superclass
name

FINAL CLASS

> Final classes are those classes which cannot be
inherited, that is, a final class cannot be
subclassed.

»If a class has to be prevented from being
inherited, the class can be declared as final.

» This is achieved in Java using the keyword final

Example

final class Base

{
Base()

{

System.out.printin("Constructor of super class");

}
void funi()

{

System.out.printIn("Function inside Super class is
called");

}
}

class Sub extends Base

{
Sub()

{

System.out.printIn("Constructor of sub class");

}
/* void funi()

{
System.out.printIn("Function inside Sub class is called");
Y/

}

class FinalDemo

{

public static void main (String args[])
{

Sub s=new Sub();

s.funi();

}
}

When the above program is compiled, it
would give the following error.

* FinalDemo.java:12: cannot inherit from final Base
* class Sub extends Base

Final Variables and Methods

» All methods and variables can be overridden by
default in subclasses.

»To prevent the subclasses from overriding the
members of the super class, they can be declared as
final using the modifier as ‘final’.

Example:
final int SIZE = 100;

»the value of a final variable can never be changed.
» Final method cannot be altered.

ABSTRACT METHOD

» Abstract Method is a method which does not
have any definition which means

» A method without any implementation

» Declaration of such method has only the method
signature followed by semicolon

»There will be no body for the method.
Example
abstract void method();

ABSTRACT CLASS

> It is a class in which contain at least one or more
abstract method

» An Abstract class is denoted by the modifier abstract.
» An abstract class can only serve as a base class.
» |t cannot be instantiated.

abstract class classname

{
{

\\variables and Methods Declaration

Abstract class test{

Int a,b,c;

Abstract void method1()
Abstract void method?2()
void method3(){

J
J

The above class contain both abstract and
normal method. The abstract method does
not have body and normal method have body

abstract class A

{

abstract void abfun();

)

class B extends A

{
void abfun()
{

System.out.printIn(“The abstract function completed in
the subclass”);

1}

class AbstractDemo

{

public static void main(String argsl[])

{
B b=new B();

b.abfun();
1}

What Is an abstract method?

The method which does not have body is called as abstract method. Tt just contains
only method signature.

What s an abstract class?
An abstract class is a class which contains 0 or more abstract methods.

Can we create an object of abstract class?

No. Generally the abstiact elass consists of incomplete methods like abstract methods. We cannot
create an object if the elass contains incomplete methads,

Can we declare a class as abstract and final?

No. The abstract class has no life without sub-classing. The final classes cannot be sub classed. They
both are contradictory

What is the difference between class and abstract class?

oy S e . v::'-' .- 3_"."#1:'5 '-.I_ . l-':I"I'rn;l-) = : o ?q.ﬂ,"' -a."-".i’.'f..'-‘* o }:'.T‘jj.:ﬁ-,gﬁ;j:l _ v 'h.-":h:-::-".:
R R
The class does not con‘ain abstract methods. | It contains abstract methods.

The class can be instartiated. Abstract classes cannot be instantiated i

|
|

i Note: Important things about Abstract methods and Classes

onty restriction it has is that it cannot be instantiated.

Abstract classes cannot be Instantiated,

Any class that containg abstract methods must be an abstract class. Otherwlse, 3
compile-time ervor is thrown. |

Every subclass of an abstract class must provide an implementation for all the abstract |

methods, If not, the subclass must declare itself as abstract and defer the
implementation to it subclasses,

Abstract method implies that its implementation lies in the subelasses, bt declaring
abstract methods as private or final prevents overriding and hence makes it impossible

to provide any implementation in subclasses, Therefore, compiler does not allow
abstract method to be private or final,

Abstract class can also have.concrete methods or normal methods hesides the abstract methods,
An abstract class can be declared without any abstract methods in it. In that case, the

Garbage Collection

* When we create an object with a new keyword,
java allocates heap memory to the newly created
object, This memory remains allocated
throughout the lifecycle of the object.

* When the object is no more referenced, this
allocated heap memory is eligible to be released
back to heap as a free memory.

* The mechanism java uses to automatically release
the allocated memory is called as the automatic
garbage collection

Requesting a garbage collection

* Java provides the facility to request the JVM to
perform garbage collection

 When we make such request, the chance that
garbage collection will occur in near future
Increases

* We are making only request and JVM does not
guarantee that it will comply with our request

How can we request garbage
collection
* We can request garbage collection in two
ways
using RunTime class
RunTime runtime = Runtime.getRuntime();
runtime.gc();
using System Class
System.gc();

Finalize() method

We can do some clean up operation just before
an object is garbage collected.

These operation are known as finalization

The use of finalization is to release resources held
by the object

This method is a member of the java.lang.object
class

The every class has the object class as its
superclass, this method is automatically inherited
in all the class

 We can override the finalize method in
our class to perform any finalization
necessary for objects of that class

* Following code shows how the dog class
can override the finalize() method

Class dog

protected void finalize() throws
throwsable {

system.out.printin(“garbage collecting
the dog object..”);

e What is finalization?

The cleanup operations that performed just
before an object is garbage collected is known
as finalization

 Which method should be overridden to
perform cleanup activities?

Protected void finalize() throws Throwable{
}
* Which is super class for any class in java?

Java.lang.object class is superclass for all java
classes

Access Specifiers

» The access specifier determines the scope or the
accessibility of a member of the class.

» JAVA offers four access specifiers
= private
" protected
= public
= default

Public Access Specifier

» By placing the modifier public before a member
declaration, that member is made available for all
the functions inside that class as well as to
functions of its derived class.

» By creating an object of a class inside a function of
any class, the public members of the class can be
accessed.

» Public keyword is necessary to enable web browser
or applet viewer to show the applet.

» Ex. public class Square
{ public x,y,size; }

Protected Access Specifier

» By placing the modifier protected before a member
declaration, that member is made available for all
the functions inside that class as well as to
functions of its derived class in other package.

> |t is also accessible to other classes in the same
package.

Default Access Specifier

» If the user chooses not to place a modifier in front
of the member declaration of a class, the member is
created with the default properties.

» This means that they are accessible to all the classes
in the same package.

Private Access Specifier

»By placing the modifier private before a
member declaration, that member is made
available only inside that class and not to any
other class.

;.
| 3 ccessible to class from same package:

e

Accessble to clas from different package? ye

e e

o, upless 11159 10

subclass 1

Array

Arrays

» An array is a collection of homogenous variables
that are referred by the common name.

» A specific element in an array is accessed by its
index position.

» The number of variables that can be stored in an
array is called the array dimension.

» Ex. Int roll_no[5];

Steps to create an Array

1. Declaring array
2. Allocating array(Creating)
3. Initializing array

Declaring array

* An array is declared by specifying the
data type of element it is going to hold.

* The array declaration is usually the data
type followed by a pair of square bracket
followed by the name of the array.

datatype[] arrayname; // syntax
example

int[] number;

 Another way is declaring an array is
put the pair of square bracket after
the arrayname as

int number](];
Both declaration is valid

But first form is recommended as it is
better readability

Memory model after array declaration
diagram

Int[] int Array; // Array declaration

Allocating array or creating array

* The actual array construction
with a new keyword involves
the memory allocation and the
array object creation at
runtime

* The following example shows how a simple
array is declared at compile time and
constructed at runtime

Int[]array; // array declaration

Int array = new int[5]; // array construction at
runtime

Or

Int[] intarray = new int[5]; // array construction
at runtime

Memory model after the integer array
declaration and creation

Int array = new int[5]; // array construction at runtime

Arrays Size

When an array object is created, we need to
specify how many elements it is going to hold

It is the array size

We can specify a variable or an expression as a
value of the array size

nt number = 10;
nt total = number * 2;
nt[] intArray; // array declaration

ntarray = new int[total]; // array construction at
runtime

Initializing array

* Array can either have all of their element
initialized at the time of declaration or
the elements can be individually
initialized after declaration

Initializing Array after declaration

* This is example of an array having all of its
element individually after the declaration

Int[] myintarray = new int[5];
Myintarray[0]=10;

Myintarray[1]=20;
Myintarray[2]=30;
Myintarray[3]=40;
Myintarray[4]=50;

Initializing Array at the time of
declaration
* Array can also be created with an array
initializer without using new operator

* An array initializer is a code block with a
comma separated list of array element,
enclosed by a pair of curly braces

 Example create an array of strings
int[] numbers ={ 10,20,30,40,50};

Anonymous Array

Int[Jnumber; // array declaration
number ={10,20,30,40,50}; // error
number =new int[]{10,20,30,40,50};//ok

* |[n the above code, number array is declared
first.

* However when it is initialized with the
initializer block, compile error occur saying”
array constant can only be used in initializer

e The last statement can be used instead of
second statement. The last statement is called
anonymous arrays

Array of Object References

* An array of object references type is created
by specifying the object type and size of the
array.

* For example an array of Date object is
declared and constructed as

Date[]birthDate = new Date[5];

Array Types - One-Dimensional Array

» The general form of a one-dimensional array
declaration is:

type var-name][];

» Here, type declares the base type of the array.
The base type determines the data type of each
element that comprises the array.

int month_days|[];

» The array month_days can be linked with an
actual, physical array of integers by allocating
using ‘new’ keyword and assign it to month_days.
‘new’ is a special operator that allocates memory.

» The general form is
array-var = new type[size];

class AutoArray

{

public static void main (String argsl])

{

intmonth_days|]=
{31,28,31,30,31,30,31,31,30,31,30,31};

1

System.out.printin(“April has ” + month_days[3] +

“days.”);
}

}
Output:

April has30days.

Two-Dimensional Array

» In Java, multidimensional arrays are actually array of arrays.

» To declare a multidimensional array variable, specify each
additional index using another set of square brackets.

» For example, the following declares a two-dimensional array
variable called twoD.

int twoD [] [] = new int [4] [5]

» This allocates a 4 by 5 array and assigns it to twoD.

» Internally this matrix is implemented as an array of arrays of
int.

Two-Dimensional Array
class FillArray

{

public static void main(String args[])

{
int[][] m;

m=new int[4][5];
for(int row=0;row<4;row++)

{

for(int col=0;col<5;col++)

{

m[row][col]=row+col;
System.out.print("\t elements are" +m[row][col]);

}
}
}
}

Strings

 The most important java data types is String

* In many other programming languages
String is an array of characters

* This is not the case with java
* String are object in java

* The string class is part of java.lang.package

How strings are created

* We can construct a string just like we
construct any other type of object: by using
new and call the string constructor

Example
string str = new string(“hello”);

This create a string object called str that contain
the character string “Hello”.

* Another example
string str = “java string are object”

In this case str is initialized to the character
sequence “ java string are object”.

Once we created string object, we can use
it anywhere that a quoted string is
allowed

Why string are called immutable

e String object are created by either using new
operator or enclosing a sequence of character
in double quotes

* The string object created by either way is
immutable

* |t means once we create a string object by
specifying a sequence of character, that
object will always represent that same
sequence of character throughout its life

JAVA STRINGS
» Java uses String class to encapsulate string of

characters.
» String is a sequence of characters
STRING CONSTRUCTORS
String class provides number of constructors

a. String s=new String() — create instance of string
with no characters.

b. String (char[]) — create a string initialized by an
array of characters.

String(char chars|[],int startindex, int numChars)

d. String(String strObj)-create string object that
contains the same character sequence as another
string .

O

Methods of string class

The string class has many important methods.
Following are the commonly used methods
Concat()

Replace()

Tolowercase()

Touppercasse()

Trim()

Concat()

This method create a new string by appending the
content of stringobject passed as argument to
the content of string on which the method is

invoked
public String concat(String str)

Examples:
String str = “skyward”
Ssytem.out.printIn(str.concat(“publisher”);

Output: skyward publisher

Replace()
public String replace(char oldChar, char newChar)

Returns a new String resulting from replacing all
occurrences of oldChar in this String with
newChar.

Examples:

"mesquite in your cellar".replace('e’, 'o')
returns "mosquito in your collar”

public String toLowerCase()
Converts all of the characters in this String to lower case.

Examples:
"DOSA".toLowerCase() returns "dosa"

public String toUpperCase()
Converts all of the characters in this St ring to upper case.
Examples:

"india".toUpperCase() returns "INDIA"

public String trim()
Removes white space from both ends of the String.

Example

public class StringDemo

{

public static void main(String s[])

{
char ch;
String str = "This Is A Test";
String upper = str.toUpperCase();
String lower = str.toLowerCase();
String concat = str.concat("In Java");
Stringtrm =" Hello World ".trim();
String replac = "Hello".replace('l','w');
ch ="abc".charAt(2);
System.out.printin(ch);
System.out.printin("Uppercase " + upper);
System.out.printIn("Lowercase " + lower);
System.out.printIn("Concatenate " + concat);
System.out.printIn("Trimming "+ trm);
System.out.printIn("Replace " + replac);

Output:

C
Uppercase THIS IS A TEST
Lowercase thisis a test
Concatenate This Is A Testln Java
Trimming Hello World

Replace Hewwo

STRING BUFFER

* The String class is immutable (constant), i.e. Strings
in java, once created and initialized, cannot be
changed.

* The String is a final class, no other class can extend
it, and you cannot change the state of the string.

e String values cannot be compare with '==', for string
value comparision, use equals() method. String
class supports various methods, including
comparing strings, extracting substrings, searching
characters & substrings, converting into either
lower case or upper case, etc.

STRING BUFFER

* String buffer represent the characters in java
in a growable and modifiable manner.

* |tis providing convenient way to modify

strings.

e |t defines three constructors

A) String

B) String
size

ouffer ()-reserves room for 16 ¢

naracter

ouffer (int num)-accepts int anc

set the

C) Stringbuffer (String str)-accepts string and
assign room for 16 more characters.

STRING BUFFER

* For example,

String str = “Hello”;
StringBuffer stringBuffer = new StringBuffer(str);

Here, capacity of stringBuffer object would be 5 +
16 = 21.

STRING BUFFER

* For example,

StringBuffer stringBuffer = new StringBuffer(“Hello
World”);

System.out.printin(stringBuffer.length());
System.out.printin(stringBuffer.capacity());

This will print,
11
27

STRING BUFFER METHODS

1. Append ()= used to concatenate string at the end
of string buffer object.

Stringbuffer append (String str)
Stringbuffer append (int num)
Stringbuffer append (object obj)
2. charAt() and setCharAt()

- Char charAt(int where)-index of the character is
obtained.

- Void setCharAt(int where,char ch)-specifies the
index of the character being set ,ch specifies new
character.

STRING BUFFER METHODS

1. Delete and deleteCharAt()-used to delete a character.
Stringbuffer delete(int startindex,int endindex)

StringBuffer deleteCharAt(int loc)-delete the character at
the index specified by loc.

2. ensureCapacity()-it is used to set the size of the buffer.
Syntax:

Void ensureCapacity(int capacity)

3.getChars()-used to copy a substring into an array.

Syntax:

Void getChars(int sourceStart,int sourceEnd,char
target[],int targetstart)

STRING BUFFER METHODS

1. Insert()-insert one string into another.
Stringbuffer insert(int index, string str)
|. Stringbuffer insert(int index, char ch)

Il. Stringbuffer insert(int index, object obj)

2. length() —used to find the length of the string
buffer.

capacity()-used to find total allocated capacity of the
buffer.

int length()
Int capacity()

STRING BUFFER METHODS

1. Replace()- replaces one set of characters with
another set inside a string buffer.

Syntax: stringbuffer replace(int startindex,int
endindex,string str)

2. reverse()-reverse the character in the string buffer.
Syntax: stringbuffer reverse()

3.setlegnth()-used to set the length of the buffer
Void setLengthrin(int len)

4.substring()-returns the substring of a string.

String substring(int startindex,int endindex)

STRING BUFFER METHODS

1. When to use String and when StringBuffer?

If there is a need to change the contents frequently,
StringBuffer should be used instead of String
because StringBuffer concatenation is significantly
faster than String concatenation.

STRING BUFFER METHODS

\mport j:w.m.'*;

ublic ¢las 5tringEuF5::§ .
;uhlicmﬂt yoid maun (String] s} throws Exception}

ﬁﬁ&ﬁdﬁﬂdﬂ j.ﬂ = |
oo BueredReater{new InputStreamReader{System o)
String A

wyl

Sj-bmu.l:n.&t.pri.nt{“ﬁ ntes Our B .

ey iﬂ.rtadljn:[};

ar =" This is the example of SringBuffer class and it's functions.
= Th ple

STRING BUFFER METHODS
StringBuller st bul — new SininsButllery;

strbuf append(stir);
System.our_printin{strbuf);
strbuf.delece{0 . str. length();
S L append()
strbuf append ("Hello™);
strbuf.append(TWorld™);
Fprint HelloWorld
System.ourt.prnntln{strbuf);
F Fansere()
stcrbuf.inserc(5,.” _Java *);
Fprint Hello_Java World
Syszem.our.printin{strbuf);

STRING BUFFER METHODS

& S reverseld

5I:I:'l_‘.-l_l.{_:r-:1."-:r£-:l::|;
System.out_print| Reversed string = “);
Syspem . outl princin{strbaf);
S prne disa™WE ava] ol
scrbuaf reverse();
Svsperm. out. princlan(scrbuaf);
Sfpoine Hello Java “World
A s har AT
strbuf setChar A (5.7 “);
Svstem.out. printlo(scrbwf);
AiApriw Hello Java "WWorld
Ff foehsrari]
System . out.print{ Characrer at 6th position = ™);
Syvstem.out.println{s=trbuf.charAci(6]);
S prenr §
A enbsrringd
System.out_print{ Substrng from position 5 1o & : ¥);

Svsrem.out. println{srrbuf. subsering(3.71};

Vector class

» A Vector class is Java’s basic list class.
» Alist is an ordered collection of items.
» The operations that can be performed on a list are:
* Creating a new list
* Adding an element to the list
* Removing an element from the list
* Finding an element from the list

» A list differs from an array in that a list can grow
whereas the size of the array is fixed.

» When an element from the List is removed, the space
that was occupied by that element will be occupied by
another element, whereas when an element of an
array is removed, the space occupied by it will not be
available for any other purpose and may go waste.

e e T et e e e T

v.addlo) adds Object o to Vector v

L 4, o) Tnserts Object o ar index 1, shifring elements up a3 necessary.

v.clear() removes all elements from Vector v

v.contains|a) Rerurns true if Vector v contains Object o -

v.hirstElement(j) Returns the first elemen.

v.zet(i} Returns the obpect at int index i

v.JastElement(i) Returns the last element.

v listIrerator() Returns a ListIterator that can be used 1o go aver the Vecror.
This is a useful alternarive o the far loop,

v.remove(l) Removes the ¢lement ar posivion 1, and shifts all following
elements down.

v.561(1,0] Sets the element a1 index 1 to o,

v_s1ze() Eeturns the number of elements in Vector v.

v.aoArray(O I:rject[q The array parameter can be any Ohject subclass (eg, String). This

returns the vector values in that array (or a larger array if necessary).
This 15 useful when you need the generality of 3 Vector for input,
but need the speed of arrays when processing the data.

CREATING VECTORS

* Import vector class from the java.util package.
Import java.util.Vector;
To create vector ,use three steps

i) Declare variable to hold vector
Vector v;

ii) Declare a new vector object and assign it to the
vector variable

v=new Vector(); ex. v=new Vector(5);

iii) Store things in the vector

CREATING VECTORS
v.addElement(new [neger(1)); /7 add first vector eloment
v.addElement(new Float(1.9999)); // add another vector element
for (int 1=2; 1< 10; 14 4) |
int Jastlr = ({Number) *.'.:agtﬂf:mf:ﬂl;[ﬁ],jnﬂ’a]ueﬂ;
vaddElement(new Inveger(t + lastlnt));
| /1 tecursively add mare elements

L &

Sysiem.our, printinf);
would prime

[Z, 1.9999 3 &, 10, 15, 21, 28, 36, 45]

CREATING VECTORS

ImPOfT java.ut. Vector;
public class MainClass {
public static void mawn(5tring args]) {
Vecror v = 0ew Wecbor|)
for {1t 1 = 01 o< 10:1+4 +}{
v addii):
)

System.out.printinv];

h

Chatpuks
0,1,2,3%4,56,7,8 9]

ACCESSING ,CHANGING&REMOVING VECTORS

v.size();2 returns the current number of
elements/current size of the vector.

v.removeElementAt(0);2> used to delete element of
the vector.

trimToSize()=2> used to shrunk the capacity.

V.elementAt(i)=> used to get a specific element form
the vector.

-!.; (jnr,J-:;i{v.si?.i:I:::; 1++] 4

r i ra ! . . e
"-:',.'H_.Ej]l,n,jl,'_'t_:l_']:"_[]j]'ll ¥ +14 ﬂ] =" 4 1:.2;:'111:’.’:1.:'“!.1]!},

[
I

Wrapper Classes

» The java.lang package includes a number of classes
that “wrap” a primitive data type in a reference
object.

» These classes constitute the wrapper classes.

» The wrapper classes provide object versions of the
primitive data types.

» These classes include methods for converting the
value from one data type to another.

» The wrapper classes are final.

Important Wrapper Classes

» Integer

» Long

> Byte

» Float

» Double

» Character

> Boolean
> Void

Number Class

» The Number class is the super class for the object
wrappers for the int, long, float and double types.

» Any class that expects an instance of a Number
may be passed an Integer, Long, Float or Double
class.

Integer - Class

The Integer class provides a wrapper for the int data type.

It contains methods for converting integers to strings and vice
versa.

> The constructor takes either of the following form:

» public Integer(int val)
» public Integer(String s) throws NumberFormatException

» In the second form, if the String contains non-numeric
character, the NumberFormatException is thrown.

» This class includes methods for fetching information from
System properties.

Example
class IntegerDemo

{

public static void main(String args[])

{
Integer i=new Integer(7);
Integer j=new Integer(5);
Integer k=new Integer(5) ;
System.out.printin(“ Equivalent float Value is :”+ i.floatValue()) ;
System.out.printin(“ Equivalent double Value is :”+ i.doubleValue()) ;
System.out.printin(“ Equivalent byte Value is :”+ i.byteValue()) ;
System.out.printin(“ Equivalent long Value is :”+ i.longValue()) ;
System.out.printin(“ Equivalent String Value is :”+ i.toString()) ;
System.out.printin(“ The objects i and j are equal”+ i.equals(j));
System.out.printin(“ The objects i and k are equal”+ i.equals(k));
System.out.printin(“ The objects k and j are equal”+ k.equals(j));

System.out.printin(“ The int equivalent of string given in command
line:”+Integer.parselnt(a[0]));

Long

» The Long class provides a wrapper for the long data
type.

> It contains methods for converting long to strings and
vice versa.

The constructor takes either of the following form:

» public Long(long val)
» public Long(String s) throws NumberFormatException

» In the second form, if the String contains non-numeric
character, the NumberFormatException is thrown.

» This class includes methods for fetching information
from System properties.

Example

class LongDemo

{

public static void main(String a[])

{
Long i=new Long (7);
Long j=new Long (5);
Long k=new Long (5) ;
System.out.printIn(“ Equivalent float Value is :”+ i.floatValue()) ;
System.out.printIn(“ Equivalent double Value is :”+ i.doubleValue()) ;
System.out.printIn(“ Equivalent byte Value is :”+ i.byteValue()) ;
System.out.printIn(“ Equivalent int Value is :”+ i.intValue()) ;
System.out.printIn(“ Equivalent String Value is :”+ i.toString()) ;
System.out.printIn(“ The objects i and j are equal”+ i.equals(j));
System.out.printIn(“ The objects i and k are equal”+ i.equals(k));
System.out.printIn(“ The objects k and j are equal”+ k.equals(j));

System.out.printIn(“ The long equivalent of string given in command
line:”+Long.parseLong(a[0]));

Byte
» The Byte class provides a wrapper for the byte data type.

» |t contains methods for converting byte to strings and vice
versa.

» The constructor takes any one of the following form:

public Byte(byte val)
public Byte(String s) throws NumberFormatException

» In the second form, if the String contains non-numeric
character, the NumberFormatException is thrown.

» This class includes no method for fetching information from
System properties.

Example

class ByteDemo

{

public static void main(String a[])

{
byte b=7,d=5,c=5;
Byte i=new Byte(b);
Byte j=new Byte(d);
Byte k=new Byte(c) ;
System.out.printIn(" Equivalent float Value is :"+ i.floatValue()) ;
System.out.printIn(" Equivalent double Value is :"+ i.doubleValue()) ;
System.out.printIn(" Equivalent long Value is :"+ i.longValue()) ;
System.out.printIn(" Equivalent int Value is :"+ i.intValue()) ;
System.out.printIn(" Equivalent String Value is :"+ i.toString()) ;
System.out.printIn(" The objects i and j are equal"+ i.equals(j));
System.out.printin(" The objects i and k are equal"+ i.equals(k));
System.out.printIn(" The objects k and j are equal"+ k.equals(j));

System.out.printin(" The byte equivalent of string given in command
line:"+Byte.parseByte(a[0]));

Short

The Short class provides a wrapper for the Short data
type.

» It contains methods for converting Short to strings and
vice versa.

» The constructor takes any one of the following form:

» public Short(Short val)
» public Short(String s) throws NumberFormatException

» In the second form, if the String contains non-numeric
character, the NumberFormatException is thrown.

Example

class ShortDemo

{
public static void main(String a[])

{
short b=7,d=5,c=5;
Short i=new Short(b);
Short j=new Short(d);
Short k=new Short(c) ;
System.out.printIn(" Equivalent float Value is :"+ i.floatValue()) ;
System.out.printIn(" Equivalent double Value is :"+ i.doubleValue()) ;
System.out.printIn(" Equivalent long Value is :"+ i.longValue()) ;
System.out.printIn(" Equivalent int Value is :"+ i.intValue()) ;
System.out.printIn(" Equivalent String Value is :"+ i.toString()) ;
System.out.printIn(" The objects i and j are equal"+ i.equals(j));
System.out.printIn(" The objects i and k are equal"+ i.equals(k));
System.out.printIn(" The objects k and j are equal"+ k.equals(j));
System.out.printin(" The Short equivalent of string given in command
line:"+Short.parseShort(a[0]));

}

Float

» The Float class provides a wrapper for the float data
type.

» The following constructors are supported by the
Float class.

» public Float (float value)
» public Float (double value)

» public Float (string s) throws Number Format
Exception

Double

» The Double class provides a wrapper for the
double data type. This class supports the
following constructors:

» public Double (double value)

» public Double (string s) throws Number Format
Exception

Character

» The Character class provides a wrapper for
the char data type.

» It contains methods for converting
characters to numeric digits and vice versa,
to check whether a given character is an
alphabet, number and so on.

» This class has a single constructor.

Boolean

»The Boolean class provides a wrapper for the
boolean data type. It has two types of constructors.

» public Boolean(boolean Value)
» public Boolean(String str)

Void

» The wrapper class Void is used for rounding
out the set of wrappers for primitive types.

» This wrapper class has no constructor or
method and contains only the TYPE
attribute that is common to all the wrapper
classes.

Multithreading

Dr.T.Logeswari

Why do we need threads?

* To enhance parallel processing

* To increase response to the user

* To utilize the idle time of the CPU

* Prioritize your work depending on priority

Example

Consider a simple web server
The web server listens for request and serves it

If the web server was not multithreaded, the
requests processing would be in a queue, thus
increasing the response time and also might hang
the server if there was a bad request.

By implementing in a multithreaded
environment, the web server can serve multiple
request simultaneously thus improving response
time

Creating threads

* |n java threads can be created by extending
the Thread class or implementing the
Runnable Interface

* |t is more preferred to implement the
Runnable Interface so that we can extend
properties from other classes

* Implement the run() method which is the
starting point for thread execution

Running threads

Example
class mythread implements Runnable{
public void run(){
System.out.printIin(“Thread Started”);

class mainclass {
public static void main(String args[]){

Thread t = new Thread(new mythread()); // This
is the way to instantiate a thread implementing runnable
interface

t.start(); // starts the thread by running the run
method

e Calling t.run() does not start a thread, it is just
a simple method call.

* Creating an object does not create a thread,
calling start() method creates the thread.

States of Java Threads

* 4 separate states
— new: just created but not started
— runnable: created, started, and able to run

— blocked: created and started but unable to run
because it is waiting for some event to occur

— dead: thread has finished or been stopped

States of Java Threads

stop(),
end of run method

start()

I/O request,
suspend()

notify(),
I/O completion,
resume()

blocked

Controlling Java Threads

_.start(): begins a thread running
wait() and notify(): for synchronization

— more on this later
_.stop(): kills a specific thread (deprecated)
_.suspend() and resume(): deprecated
_.join(): wait for specific thread to finish

_.setPriority(): 0to 10 (MIN_PRIORITY to
MAX_PRIORITY); 5 is default (NORM_PRIORITY)

Java Thread Scheduling

* highest priority thread runs

— if more than one, arbitrary

* yield(): current thread gives up processor so
another of equal priority can run

— if none of equal priority, it runs again

* sleep(msec): stop executing for set time

— lower priority thread can run

Synchronization

* Synchronization is prevent data corruption

* Synchronization allows only one thread to
perform an operation on a object at a time.

* |f multiple threads require an access to an
object, synchronization helps in maintaining
consistency.

Example

public class Counter{
private int count = 0;
public int getCount(){
return count;

public setCount(int count){
this.count = count;

* In this example, the counter tells how many an access has
been made.

* If athread is accessing setCount and updating count and
another thread is accessing getCount at the same time, there
will be inconsistency in the value of count.

Fixing the example

public class Counter{
private static int count = 0;
public synchronized int getCount(){
return count;

public synchoronized setCount(int count){
this.count = count;

* By adding the synchronized keyword we make sure that when one thread
is in the setCount method the other threads are all in waiting state.

* The synchronized keyword places a lock on the object, and hence locks all
the other methods which have the keyword synchronized. The lock does
not lock the methods without the keyword synchronized and hence they
are open to access by other threads.

What about static methods?

public class Counter{
private int count = 0;
public static synchronized int getCount(){

return count;

public static synchronized setCount(int count){
this.count = count;

* In this example the methods are static and hence are
associated with the class object and not the instance.

* Hence the lock is placed on the class object that is,
Counter.class object and not on the object itself. Any other

non static synchronized methods are still available for access
i A+thAavr +lhvrAaAaAde-

Common Synchronization mistake

public class Counter{
private int count = 0;
public static synchronized int getCount(){
return count;

public synchronized setCount(int count){
this.count = count;

* The common mistake here is one method is static
synchronized and another method is non static synchronized.

* This makes a difference as locks are placed on two different
objects. The class object and the instance and hence two
different threads can access the methods simultaneously.

Object locking

 The object can be explicitly locked in this way
synchronized(mylnstance){

try{
wait();
}catch(InterruptedException ex){

}

System.out.printin(“lam in this “);
notifyAll();

}

 The synchronized keyword locks the object. The wait
keyword waits for the lock to be acquired, if the object was
already locked by another thread. Notifyall() notifies other
threads that the lock is about to be released by the current
thread.

* Another method notify() is available for use, which wakes
up only the next thread which is in queue for the object,
notifyall() wakes up all the threads and transfers the lock to
another thread having the highest priority.

Further Reading

* http://docs.oracle.com/javase/tutorial/essenti
al/concurrency/sync.html

* http://javarevisited.blogspot.com/2011/04/sy
nchronization-in-java-synchronized.html

Exception Handling

Types of error in java

 Compile time error(forgetting semicolon
in program)

* Run time error (main() has no
arguments)

* Logical error(flaw in the logic of the
program)

* An exception is an abnormal condition that arises in
a code sequence at a run time.

* The Exception class defines the possible error
conditions that the program may encounter.

* |t is an event ,which occurs during the execution of
a program ,that disturbs the normal flow of the
program instructions.

Exceptions occurs when the

» user is trying to open a file that does not exist
> network connection is disconnected

» Operands which are manipulated do not fall within a
prescribed range

» class file is missing

 What is exception?

An exception is an error that occurs at run
time
 What is an exception handling?

whenever exception handling occurs in the
program, the concept of handling the class
object and avoiding them from reaching back
to JVM (nothing but exception handling). Java
to deal with handling the errorin an
organized fashion is called exception handling

How java handles exception?

java provides the exception handling
constructs like try catch, try catch finally to
manage run time error

Types of Exception

* |n java, all classes are represented by classes.

* All exception classes are derived from a class
called throwable

* The Exception are classified into two types

— Exception
— Error
*Error and exception are subclasses of throwable

*Object class is the super class of Throwable class

Exception Hierarchy

Java.lang.Throwable

/\

java.lang.error java.lang.Exception

java.lang.Error

It represents normally a series of non-executable
code such as running out of memory or being unable to
locate a class.(stackOverflowerror)

java.lang.Exception

It represents unusual conditions that arise in the
course of program executions, such as reaching end of
file, attempting to reference an array element outside
the actual source of the array. (divide by zero)

»Throwable is at the top of the exception class
hierarchy.

»All exception types are the subclasses of the
built-in class Throwable.

> Throwable class has two subclasses that
partition the exception into two distinct
branches.

»0ne branch is headed by Exception. This class
is used for exceptional conditions that user
programs should catch. This class creates
custom exception types.

»There is an important subclass of Exception,
called Run-time Exception.

» The other branch is topped by Error, which
defines exceptions that are not expected to be

caught wunder normal circumstances by
program.

» Exceptions of type Error are used by the Java
run-time system to indicate errors having to
do with the run-time environment, itself.
Stack overflow is an example of such an error.

Runtime or unchecked exception

we don’t handle some of the exceptions, The exception objects for which
compiler does not compel to handle them is known as unchecked
exceptions,

RuntimeExceptions are:
o ArithmeticException {often the result of dividing by 0)
0 ClassCastException (trying to pﬂfﬂrﬁl an illegal cast operation)
o IndexArrayOutOfBoundsException
(eﬁ accessing element 15 of a 10-element arrhy)

o NullPointerException (irying to access an object when the vanable
contains nuli)

Checked exception

* The checked exception are checked
at the compile time by the compiler
and it compel to handle the
exception in the program
(IOException)

- “"I.-.Inw Exceﬁi-iﬁ_ils are u:lasslﬂéE?
":’] 'll Exceptions are of two types: Error and Exception.

%‘m What is the difference between Error and Exception?
T3 Anexception is an error which can be handled. An error is an error which cannot be

handled. Errors are generated by the JVM itself and hence it cannot be handled.
Example: OutofMemory.

What is Throwable?
The Throwable is a class represents all errors and exceptions which may occur in Java

Which is the Super class of all Exceptions?
Exception

What is checked exception? Give an example.
The checked exceptions are checked at the compile time by the compiler and it compels to handle
the exception in the program.

Example: 10Exception, FileNotFoundExeeption, InterruptedException etc.,

What is unchecked exception? Give an example.

The unchecked exceptions are checked by the JVM and compiler does not compel to handle the
exception in the program.

| Example: ArithmeticException, ClassCastException, IndexArray0utOfBoundsException etc.,

Types of Errors

» An error may produce an incorrect output or may
terminate the execution of the program abruptly.

>t is therefore important to detect and manage
oroperly, all the possible error conditions in the
orogram.

Errors are broadly classified into two categories:
» Compile-time errors and
» Run-time errors

Compile Time Errors

* All syntax errors will be detected and displayed by the
Java compiler and therefore these errors are known as
Compile-Time errors. Whenever the compiler displays
an error, it will not create the .class file.

 Some of the compile time errors are:

» Missing semicolons

» Missing (or mismatch of) brackets in classes and
methods

» Misspelling of identifiers and keywords
» Incompatible types in assignments/initialization etc.

Run Time Errors

Some of the run-time errors are:

» Dividing an integer by zero.

» Accessing an element that is out of the bounds of
an array.

» Trying to store a value into an array of an
incompatible class or type.

» Passing a parameter that is not in a valid range or
value for a method.

Keywords in Exception Handling

* Java exception handling is managed via five
keywords: try, catch, throw, throws and finally.

* To handle a run-time error, simply enclose the code
that requires to be monitored inside a try block.

* Immediately following the try block, a catch clause
that specifies the exception type that has to be
caught is included

A general form of an exception-handling block

try
{
// block of code to monitor for errors
}
catch(ExceptionTypel exOb){
// exception handler for ExceptionTypel
}
catch(ExceptionType2 exOb) {
// exception handler for ExpectionType2

}
//. ..

finally
{

// block of code to be executed before try block ends

}

Exception Type

ArithmeticException

ArraylndexOutOfBounds

ArrayStoreException

FileNotFoundException

|OException

NullPointerException

NumberFormatException

Cause of Exception

Caused by mathematical errors such as
division by zero.

Caused by an array indexes.
Exception

Caused when a program tries to store the
wrong type of data in an array.

Caused by an attempt to access a Nonexistent file.

Caused by general I/0 failures, such as
Inability to read from a file.

Caused by referencing a null Object.

Caused when a conversion between strings
and number fails.

OutofMemoryException

Security Exception

StackOverflow Exception

StringIndexOutOf

BoundsException

Caused when there is not enough
memory to allocate new object.

Caused when an applet tries to
perform an action not allowed by
the browser’s security setting.

Caused when the system runs out of
stack space.

Caused when a program attempts to
accessa nonexistent
character position

The following program includes a try block and a catch clause which processes the
ArithmeticException generated by the division-by-zero error:

class Exc2

{

public static void main(String args|])
{
int d,a;
try
{ // monitor a block of code.
d=0;
a=42/d;
System.out.printIn("This will not be printed.");
}
catch (ArithmeticException e)
{ // catch divide-by zero error
System.out.println ("Division by zero");
}
System.out.println ("After catch statement.");
}
}

Multiple Catch statements

It is possible to have more than one catch statement in the catch block as illustrated:

try
{
statement; // generates an exception
}
catch (Exception-Type-1 e)
{
statement; // processes exception type 1
}
catch (Exception-Type-2 e)
{
statement; // processes exception type 2
}
catch (Exception-Type-N e)
{

statement; // processes exception type N

}

Exception (contd...)

»When an exception in a try block is generated, the
Java treats the multiple catch statements like cases
in a switch statement.

» The first statement whose parameter matches with
the exception object will be executed and the
remaining statements will be skipped.

Throw

> It is possible to throw an exception explicitly, using the
F\hrow statement. The general form of throw is shown
ere:

throw Throwablelnstance

» Throwablelnstance must be an object of type
Throwable or a subclass of Throwable.

There are two ways by which a Throwable object can
be obtained

» using a parameter into a Catch clause or
" creating one with the new operator.

The flow of execution stops immediately after the

throw statement; any subsequent statements are
not executed.

The nearest enclosing try block is inspected to see if
it has a catch statement that matches the type of
exception. If it does find a match, control is
transferred to that statement.

If not, then the next enclosing try statement is
inspected and so on.

If no matching catch is found, then the default
exception handler halts the program and prints the
stack trace.

// Demonstrate throw.
class ThrowDemo

{

static void demoproc()

{
try

{

throw new NullPointerException("demo");

J

catch(NullPointerException e)

{
System.out.printIn("Caught inside demoproc.");
throw e; // rethrow the exception

J
}

public static void main(String args[])

{
try

{

demoproc();

}

catch (NullPointerException e)

{

System.out.printIn("Recaught: " + e);

}
}
}

Output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

Program description

In this program, the class ThrowDemo has a method -called
demoproc() which uses a throw statement to throw a
NullPointerException.

The function itself provides a try and catch clause to handle the
exception thrown.

The catch clause after handling the exception, once again throws it.
Therefore, whenever any function calls the function demoproc(), it
has to handle the exception thrown by the catch clause inside the
demoproc().

Therefore, the main function encloses the call to the function
demoproc() inside the try catch clause.

What is the difference between throw
and throws

* The throws clause is used when the
programmer does not want to handle the

exception in the method and throw it out of
method

* The throw clause is used when the
programmer want to throw an exception

explicitly and wants to handle it using catch
block.

* Hence throw and throws are contradictory

finally block

When a finally block is defined, this is guaranteed to execute, regardless
of whether or not an exception is thrown.

class FinallyDemo
{
// Through an exception out of the method.
static void procA()
{
try
{ System.out.printin(“inside procA”);
throw new RuntimeException(“demo”);

}
finally

{
System.out.printIn(“procA-s finally”);

} }// procA

// Return from within a try block.
static void procB()
{
try
{
System.out.printin(“inside proB”);
return;

}
finally

{
System.out.printIn(“proB’s finally”);

}
}// procB

// Execute a try block normally.
static void procC()

{ try
{ System.out.printin(“inside procC”);
}
finally
{ System.out.printin(“procC’s finally”);
}
}// procC
public static void main(String args[])
{ try
{
procA();
} catch (Exception e)
{ System.out.printIin(“Exception caught”);
}
procB();
procC();
} // main

} //class

Applet Programming

* An applet is a java class that can be downloaded
and executed by the web browser. It is a specific

type of java technology. An applet runs in the
environment of the web browser.

* The applet can be executed by 2 methods:
e Using HTML document

* Using appletviewer

Applet Programming
 APPLET=JAVA Byte Code + HTML

What is an Applet?

* Applet is a small application that is embedded in a
HTML page , which is accessed and transported
over the internet, automatically installed into the
client machine and runs as part of a web page.

 Applets are great for creating dynamic and
interactive web application.

Using HTML Document

* Once an applet has been compiled, it is
included in a HTML file using the APPLET tag.

e When the HTML file is loaded in the browser,
the applet will be automatically executed

/*
<applet code ="MyApplet" width=200 height = 60>
</applet>

*/

Description of Applet Tag

The APPLET tag is used to start an applet from both an
HTML document and from an applet viewer. The syntax for
the standard APPLET tag is shown here.

<APPLET

CODEBASE = codebaseURL]

CODE = appletFile]

ALT = alternateText]

'NAME = appletinstanceName]

'WIDTH = pixels HEIGHT = pixels]

ALIGN = alignment]

'VSPACE = pixels] [HSPACE = pixels]

<PARAM NAME = AttributeName VALUE = AttributeValue>]
<PARAM NAME = AttributeName2 VALUE = AttributeValue>]

</APPLET>

CODEBASE

CODEBASE is an optional attribute that specifies the base URL of the
applet code, which is the directory that will be searched for the
applet's executable class file.

CODE

CODE is a required attribute that gives the name of the file containing
user applet's complied .class file. This file is relative to the code base
URL of the applet, which is the directory that the HTML file was in.

ALT

The ALT tag is an optional attribute used to specify a short text
message that should be displayed.

NAME

NAME is an optional attribute used to specify a name for the applet
instance. To obtain an applet by name, use getApplet(), which is
defined by the AppletContext interface.

WIDTH AND HEIGHT

WIDTH and HEIGHT are required attributes that give the size (in
pixels) of the applet display area.

ALIGN

ALIGN is an optional attribute that specifies the alignment of the
applet with these possible values: LEFT, RIGHT, TOP, BOTTOM,
MIDDLE, BASELINE, TEXTOP, ABSMIDDLE and ABSBOTTOM.

VSPACE AND HSPACE

These attributes are optional. VSPACE specifies the space, in pixels,
above and below the applet. HSPACE specifies the space, in pixels, on
each side of the applet.

PARAM NAME AND VALUE

The PARAM tag allows the user to specify applet specific arguments
in an HTML page. Applets access their attributes with the
getParameter() method.

Using appletviewer

» The applet code can be run using an appletviewer.
In this case, the appletviewer is typed at the
command prompt followed by the name of the java

file. The general format is:
Prompt> appletviewer filename.java

» The applet tag has to be included in the java file
itself and has to be commented (i.e. enclosed

between /* and */).

Applet Hierarchy

All applets are the subclasses of the class Applet.
Applet class belongs to the package java.applet.

All user-defined applet must import java.applet
package.

Applet extends from a class called Panel present in the
package java.awt.

This class provides support for Java's windows-based
graphical user interface.

Thus, Applet provides all of the necessary support for
window-based activities.

Hierarchy of Applet class

java.lang.Object

|

Java.awt.Component

|

java.awt.Container

RN

java.awt.window java.awt.panel

| |

java.awt.frame java.applet.Applet

The Applet Class

The class java.applet.Applet is a subclass of
java.awt.panel.

An applet is a window-based program.
Applets are event driven.

Event driven means for every interaction from the user, a
particular action takes place in the applet.

An applet will wait until an event occurs.

The AWT notifies the applet about an event by calling an
event handler that has been provided by the applet.

Once this happens, the applet must take appropriate
action and then quickly return control to the AWT

Applet differ from application

S 1.:I-.'l+_.r-'1-_llr'1_'T'- .._.". _._l =TT T YT T

S (BN N ST i e AR "--*-_.-.. et ol 3ol hers .._._... L m.....r--'-l
ﬂppietsdannthavemmm}muhad ﬂpplimﬂnnshmmain{}mathud
Applet runs under the control ofa An application is independently
java eompatible container, such as a executed.
web browser.
Applets only are executed within a Java The application programs ean be compatible
browser or appletviewer. executed using Java [nterpreter.
Applet is estricted NOT to El:ihzaﬁiﬂ Applications can utilize the network
| system and network resources, This and file system resources. But
means, applets cannot have aceess to applications have access to both file
file systent as well as network system and network resources

resources for security reasons. |

AT {u hu 1’1‘{”n£| L

Explam the process % of execution of an applet?
%4\) The applets are like Java programs, we need to create the program. Once the appletr.s
5 ::‘ o, Created, we compile and obtain its byte code. This byte code is embedded in HIML
page. The HTML page canbe viewed using web browsers like Internet Explorer or

Mozilia. The browser will execute the applet's byte code present in the HTME page
using applet enqine present in the browser, -

 Where the applets are executed?

Applets are executed by a program called applet engine which s similar to java virtual mathme
that emst Inside the web browser,

| What are local and remote applets?

An applet developed and executed in the local machine is called local applet. No need of internet
connection or network connection for local applets. The remote applets are developed by

someone else and stored on-yemote machine, The internat/network cunnectmn 1s required-to toad
that applet.

What i the fow of evecuting temote applet?

L
L

]

The usr sends 2 request foran HTML, document o remote machine Ve server,

Tie Web server refurms an HTNL dooument to the users browser, The MU document-

cntins the <APPLET tag that et the applet

The bytecode comesponding tothat applet i transfend to the use’s host, Thi byteod
was e neviously by the Jaa compler sing e Java s code fle for that aple,

The applet engine on the use’s host interptets the ytecode and puovides il

The uer then can wse te appe: ith o futherdowmloadin from hetemote machine

We srver, Thi s because the bytecode contan al te ifomation necessny o un the

ipplet

Java Applet with 5 methods

tmport java.awt.™;

IMPOrt java.applet.™;

class vivclass exten Applet § -
public void imat } §
Vi

the wvariables, methods and images initialize here
wrill be called only once because this method 1s called ondy
“once when the appler is first initializes &7

public void start () {
/% the components needed to be imimialize more than once
in yvour applet are written here or if the reader

swritches back and forth in the applets. This method
can be called more than once_

3
public void stop () {

/= This method is the counterpart to start (). The code,
used too stop the execution is writven here™s

3

pubﬁc woid destrov() {

= ﬁiiﬁ method contains the code that result in o release in o release

thed Fsources to the applet before it 1s
finisfed. This method is called only once. */
¥.oa

pubhu_: void paint (Graphics g) {
S wmrrite the code in this method to draw, write, or color

things on the appler pane are™/

¥
H

Life Cycle of an Applet

The init() method provides the capability to load
applet parameters and perform any necessary
initialization processing.

The start() method serves as the execution entry
point for an applet, when it is initially executed
and restarts the applet.

The stop() method provides the capability to
stop() an applet's execution when the Web page
containing the applet is no longer active.

The destroy() method is used at the end of an
applet's life cycle to perform any termination
processing.

It is important to understand the order in which the
various methods of the applet class are called. When
an applet begins, the AWT calls the following methods,
in the sequence:

1. init()
2. start()
3. paint()

When an applet is terminated, the following methods are
called:

1. Stop(), called when the applet is minimized.
2. Destroy(), called when the applet is closed.

Java applications are designed to run the
nomogeneous and more secure area.

Java applets are designed to run the
neterogeneous and unsecured
environment

Applets are not capable of communicate
to the server.

Not capable of reading and writing the
users file system.

Applet —is a window based program & it
works on event driven architecture

What s applet life cycle? |

An applet is born with trit() method and starts executing with start() method. To

stop the applet, stop() method is called and to terminate the applet destroy() |
method is called. Once the applet is terminated, we should reload the HTMI page to
geL the.applt-start once again from init() method, Tis way of erecuting the |
methods are called as ffe cycle of an applet, |
e e S e e i e g o

o What package mmst be Included when cresting an appiet
d|/) The package java.applet must be included when creating an applet.
agy What are the five methods that most applets will override?

The five methods are init(), start{), stap() destroy(), and paint().
What method outputs.to the applet's window?

The paint() method displays eutput in an applet's window,

Which methods are called only once in the life cycle of an applet?

init() and destroy() methods are called only once in the life cycle of an applet,
What is the order of method invocation in an applet?

It Is important to understand the order in which the methods are executed. When an applet
begins, the following methods are called in this sequerice; ;

L init() 2. start() 3. paint()

| When an applet is terminated, the following sequence of method calls takes plage:
__1-stop() 2. destroy()

oYY [mpnﬁant ?Iuti: ~ |
; @ ¢ None of the life cycle methods are compulsory while ¢reating an applet. _
o Al methods should be public; otherwise they are not avaflable to !imwser to execute. |

T o e e = ¢

1.Writing an applet code

import java.applet.*;
import java.awt.*;
public class paint extends Applet

{

public void paint(Graphics g)
{
g.drawString("welcome ",40,60);
}

}

2.Compile applet code &generate byte

code

e Save the applet code and generate the byte code using Java Compiler as
. shown _below.

Now, we have got byte code (MyFirstApplet.class) and this byte code is
required to embedded with HTML page.

3.Create an HTML page

. Open & notepad or any HTML editor. Type the below code.
. In the body of the HTML page, enter the Applet tag as given below

. Save the file as AppletExamplehtml in the same direciery where we
have stored Applet code

G 3 <TTILE> This is my Firat Appler </TITLE>

4 LBODY>

Y {Applet CodesHyFirathppiet.class width= 400 heighe=s0i>
’I 'E-. </hpplety

T < /BODY>

B

o o RN L L Ly i e TR) g e e gl e J LT
e g el ey s ety e e e [T
. [t e} 1F Fo ey mal

T

4.Execute using applet viewer

There are two ways in which we can run an applet: inside & browser or
with a special development tool that displays applets. The tool provided
with the standard Java JDK is called appletviewer. We can also run

applets in web browser like [nternet explorer,

appletviewer AppletExample bt
Important Note:

e Itisvery clear from the output that, Htle mentioned in th i] |
¢ HTML code is not displa

in the output. The reason is that, when we execute the applet using an ﬂpprMmﬂr,}F:ﬁ |

the html tags are ignored and only the applet tag will be considered for execution,

8 Wheni'.neerecutethesameusmgwebhmmenmmay-mtgetthaapptet’swindnws

frame like above and it will display all the contents mentioned i
ned |
| Example: title of the html page. | |

——

2, What are the different ways of executing an applet?

874/ There are two ways i which we ean run a applet:

) ¢ Using Java Enabled Web browser,
¢ Using an applet viewer,

What is an appletviewer? | -
An applebviewer is tool provided with the standard Java DK to.execute an applet.

Which tag is used to add an applet tnside an HTML?
<APPLED> tag is used to add an applet inside an HTML.

Can we execute an applet without writing HTHL?

tes, W can execute an applet without writing HTML by Emheddm- APFEDS b e o
Applet Code. This should be in comments, ™

—— e e

Writing and executing applet without
HTML

o For quick testing of an applet, simply include a eomment near the top of
applet's source code file that containg the APPLET tag, Here the applet,
S code and applet tag are in the same Java fle, The source Jooks like

18iuport java.applet.Appiet;
2 Iilporl:- java.awt.Font
3 [import java.awt.Graphios;

4

58/+ <Applet CodertySecondipplet.clasy widtie 400 height=500>
6 <fApplet>

T 4

:

$ public class HySeoondAnnlet extends Applet {

18 public void paint{Oraphics a {
2: Font f = new Font(*TimesRoman", Font.BOLD, 36):
3 g.setFont(f);

Lot i e L T e T 2L T LT anlierfr e, B e = e e e A T U B B T T B b = e Ema Ay T e R N TR i
Al b rl omk i, LR e B Ml B e d 0 0 T i R L g W A I F e L U Tt e e e A e e e ey D
4 et UERNSL e T (Pl LR L Y bl T P L sl e e

‘I'II

i "1"'"'1‘”‘1*’3111’" ‘""n "u‘#“bu‘;--. ﬁ@ ﬁ"'f' Xaih
il) F-|T' 3"*

Passing parameters to applet

Eitep 1: Create Applet and Compile

::: 19 g _.--.-. 2 - T T S L e e T T Tl B iy e i
i 2 import java.awt.Pont;
2 import java.awt.Craphics:

S pl:lbli w:l.d i:l:r.i.t{} g = = on
fontame = gebPacramcter{*font®) ;
fontSize = Integer.parseInt {getParancster {"aiza”}}

}

pablie vold paint{Oraphics g} [
/* Create ront cbjeot with fontHams and fontSize »f

¥Font [= new Font({fontName, Font.BOLD, ﬂmﬁiﬂj :
g.satFont{r)
.drawString{"Skyward Pnhlllhtrl', 50, 50);

Etep 2: Create HTML called FontExemple.html

{

CHEAD

CTITLE> Paramster Passing to an hppler </TITLE
<pplet CodeifyFontApplet.clasa vidth= 400 beight=500>
{EARAX NAMwfont VALTE="Tixashonan®s
{PARRM HAMF=3ize VALDEm*3§")

{/Applety -

I'Iul"lll: il 1] |‘l|“'|l:|. | "i u'ullfllllu' ; g " e I' it | "u'l -)t |l 1 |.|".'l 1j 7 " B oy 'y

TR T R T et AT o -

Step 3: Execufion and Output

|
]
|

Skyward Publishers F-

=
. O
e e R s el et

j| Applet starded.
T e T T T T e

.
T

PASSING PARAMETER TO APPLET

We know that how to pass parameters to main() method by using command line
arguments. Similarly we can pass parameters o an applet. Applets can gef
different input from the HTML file that contains the <APPLET> tag through the
use of applet parameters, To set up and handle parameters in an applet, we need
two things:

o A special parameter tag in the HTML file.
s (Code in our applet to read those parameters,

Applet parameters come in two parts: a parameter name, which is simply & name
we give, and & value, which is the actual value of that particular parameter.

In the HTML file that contains the embedded applet, we indicate each parameter
using the <PARAM tag, which has twe attributes for the name and the value,
called NAME and VALUE. The <PARAM> tag goes inside the opening and closing

<APPLET> tags:
E:l:ﬂmlﬂe _____

u:AFF-‘LET CODE=" HyFunthplei EL‘.—]E:E 1||'||fII'JrTH 100 HEIGHT-tm:
<PARAM NAME=font VALUE="TimesRoman":

| <PARAM MAME=size VALUE="36"> |
| </APPLET> : I

Parameters are passed to our applet when it iz loaded. In the init}) method of
applet, we can read the value of the parameter using the geiParameter()
method, The getParameter() takes one argument-a string representing the name
‘of the parameter we are looking for-and returns a string containing the

corresponding value of that parameter.

movy [mportant Note:
e The names of the parameters as specified in <PARAM> and the names of the parameters
in getPammeter() must match identically, including having the same case. In other
words, <PARAM NAME="name"> is different from <PARAM NAME="Name">. If parameters
are not being properly passed to applet, make sure the parameter cases match.

Example:

String fontName;
String fontSize;

public vold init)

{
fontName=getParameter(“font");
fontSize=geiParameler| size");

Tk v e o R T e e B T S E

.-.l-l:n'l:'".- J

o B

oy

1] L\.'-..-'ﬂl'd-

r TR R]

Here, we have used two Strings fontName and foniSize to receive the values of

font and size parameters. The string fontName will get “TimeRoman” and
fontSize will get “36".

ALIGNING THE APPLET DISPLAY

T

The ALIGN afibute dones how the pplet i e ied the page. This

eiouta e heve ong o ine vlue; LEFT, RIGHY 10P, TEXTTOP. MIDDLE,
ABSMIDDLE, BASELINE, BOTIOM, or ABSBOTION In the cee o

AF[,%LW and ALIGN=RIGHT, e applet sl he o it g

1<HTMLY

¢ <HEAy
3 CTITIE Parameter Passing to an Appler </TITLED
i <B0DE>

B
[
8
:
!
!
2
3
{
3

&</ GTHLY

R o

-‘.'E'.I.HHI HLEE-Iﬁnt mﬂ"ﬂmﬂm

CERRAM MiME=size VALUE="3§"
{/hpplet)
tbrrThe profispfonal veam of Skywand Fublishers bas entered inro the market of¢/br
Chrxcompucer books beinging excallant comtent The Tess {4 committed to excellenceches

¢brvexcellence in quality of coatent; excellence in the dedication of its authors;<bry
<hrrescellegce jo the nttestion to detail; and escellence in understanding the<hrs

£brsnbeds of Atidents.<hry
¢/BOTT>

(AR

DISPLAYING NUMERIC VALUE

ﬂ{e kaow to display the Strings in an applet using drawstring() method. To
display, numeric values there 15 no method Jke drawlnt(). First, we should

convert the numeric values into String and use drawString() method to display,

import java.applet. Applet:
import java.awt.Craphiox:

f+ <yppiet Code=NuooricApplet.class width= 200 height-200>

< fApplet>
*f

;pmhlin olaas NoperipAipplet extends Applet |
puoblia vold paint{caphics gj [

int Tirst=100;

1ot adcond=200;
int ane=firstdsaoomnd;

J* Convert int to Strings using String.valoaOf{)] methods +f
String [irstStr = "First Funber is 1" 41String. raloedr{firat) ;

_ El.'.ﬂnu :aumd‘Etr - 'hnmd I':d-r 1- _ ="+5tﬂ.nu raluuﬂﬂmmﬂ\:

g.drawsString (CiratStr, 20, 20);
g.drawString (saccondsSts, 20, 40);
g.drawString (sosSte, 20, &0}

I
i ol :I et "l -.n..'.-\.'lll'.."-_.. s L
el *-'J:JE.;!H_:;i .“.*F-_’-'«Jn-‘:s-;-,-:-'-i.'... ’

e Ay S

Flrst Numberis 1100
Sacond Number s :200
Sumis 300

GETTING INPUT FROM USER

We can add any graphical user interface components fike text box, button
checkbox etc., to an applet for developing interactive application. In applet, we
can only display strings and we have seen how to convert numeric values to

strings in the last section. In the below program, we have used ¢ JOptionPane
and it is part of the java swing library and it is used do a fow things Lk entering
data, display messages or a combination of those. We have used a mefhod
shotwInputDinlog() of JOptionPane class to read the input data from the vser.

The data entered will be always Strings. If we want numeric values then we
should convert it to type we wanted |

INpOTE ava.awt. ¥ -
[INpoTt Javax.ewksng,¥;

/* <Applot CodesImputApplet.class width= 100 beight=100>
e SApoTaty>
+f

public class InpatApplat oxtends JApplet {
String firstser;

Etring secondstr:

Sering somStr;

| firstStr = JOpticnPane. shovinputlinlog{*Enter Firat lml:nr Y
| secondStr w m:pttunl’m,:hnrrmutniﬂw{*mm Sevond Wombay :™)

I* Both firstStr and SevoudStr are Striogs. l!nmrl: to _L_Eunclm the nombers
* Stora tha resulit in 'l.nt.uqur varisbhla sum . . 8
ol |

int som=Integer.parseInd(Hril:s Exr) -I-Inl:ngur.puruulnhiimudﬂ:rl -

% Convert integer variable som to Strimg *I
ammStra"Som = "4 String. valueDf (xom) -

publia void paint(draphics g) {
o.Adraws teiog (somStr, 50, 130} ;

T

L]
BTN,
1
-

SRR

S,

ALk
Byt 7
.j?.: IF.E.'!:I- "

R

L T L

X a':-'lj::i_"&'l'"-!'}_

S
bt LS
2 bl .-F-."- *.ﬂ;

|'J'- E"Eﬂ

s 5 n . ;
e

3 Tn 5.11
N R e E L I

=

o "i:':

R
L]

]

i "."1.

Stm =600

) Aopletstarted

:

P ——
T

3 I
e ﬁ:,:-."
e

LY

updete() methed 18 eelled when epplet hag requested thet 4 pertmn ef its window
be redrawn. The default version first fills an applet with default back ground color
and then calls paint() method: If we fill background with a different color, user
will experience a flash of default background each time update is called. To avoid
this problem, we should override update method. So that it performs all necessary
display activities. Then call update() in paint(). '

Tmilie void updateiGraphics .g)
{
- public void paint{Graphics g]
(

l

e 1

updatelg);

n apple s to mndnw on]y whenl s upda () il pmnt() il cﬂle
Whenever our apple nes t uplate the oo dilaped n vinoy,
simply alls repaiaf, '

i mpam,(: Whch €283 window 1o be tepamled
V" ol i i) - pee ﬂIE o1t il e repamled

Advantages of Applet

o Applets are cross platform and ean ru on Windows, Mae 08 and Linug
platform.

o Applets can work all the version of Java Plug-in

o Applets runs in 2 sandbos, so the user does not need to trust the rode. o1t
can work without security approval

o Applets are supported by most web browsers,

o Applets ave cached in most web browsers, so wil be quick to load whea
refurning to 2 web page.

Disadvantages of Applet
0w plugedn 15 required o run applet

o Java applt vequires JVM o fst time it foles significant start-up tme

o Happlt s vot already cached in the maching, 1t will be downloaded from
Internet and will take time

o s iffinl o design amd budd good user inertce in apolets compazed to
other fechingloges.

Applet Display Methods

Applets are displayed in a window and they use the
AWT to perform input and output.

To output a string to an applet, drawString() which is a
member of the Graphics class is used.

An object of Graphics class provides the surface for
painting.

void drawString(string message, int x, int y)

Here, message is the string to be output beginning at
the coordinate (x,y).

In a Java window, the upper-left corner is location (0,0).

To set the background color of an applet's window, use
setBackground().

To set foreground color, use setForeground().

AppletContext and showDocument()

The showDocument() method defined by the AppletContext
interface is used to allow an applet to transfer control to
another URL.

AppletContext is an interface that lets the user to get the
information from the applet's execution environment.

Within an applet, once the user has obtained the applet's
context, the user can bring another document into view by
calling showDocumenty().

This method has no return value and throws no exception if it
fails.

There are two showDocument() methods.

The method showDocument(URL) displays the document at the
specified URL.

The method showDocument(URL, target) where target refers to
the location where the document is to be displayed.

Method Description
» Applet getApplet(String appletName)

> Returns the applet specified by appletName if it is within
the current applet context.

» Enumeration getApplets()

> Returns an enumeration that contains all the applets
within the current applet context.

» mage getlmage(URL url)

> Returns an Image object that encapsulates the image
found at the location specified by url.

» void showDocument(URL url)

> Brings the document at the URL specified by url into view.

» void showStatus(String str)

> Display string given in ‘str’ in the status window.

Example

import java.awt.Graphics;

import java.awt.*;

import java.applet.Applet;

/*<applet code= “Rec.class” width=250 height=250></applet>*/

public class Rec extends Applet

{

public void paint(Graphics g)

{
g.drawlLine(10,10,60,50);
g.fillRect(100,10,60,50);
g.drawRoundRect(190,10,60,50,15,15);
g.fillRoundRect(70,90,140,100,30,40);

}

