UNIT I: SET, RELATIONS AND FUNCTIONS

SET THEORY

• A **Set** is a definite collection of objects, objects are known as elements or members of the set.

An element 'a' belong to a set A can be written as 'a \in A', 'a \notin A' denotes that a is not an element of the set A.

• Representation of a Set

A set can be represented by various methods. 3 common methods used for representing set:

1. Roaster form or tabular form method.

2. Set Builder method.

• Roster form

In this representation, elements are listed within the pair of brackets {} and are separated by commas.

For example:

1. Let N is the set of natural numbers less than 5.

 $N = \{1, 2, 3, 4\}.$

2. The set of all vowels in English alphabet.

 $V = \{ a, e, i, o, u \}.$

• Set builder form

In set builder set is describe by a property that its member must satisfy.

For example:

1. $\{x : x \text{ is even number divisible by 6 and less than 100}\}.$

- 2. $\{x : x \text{ is natural number less than } 10\}.$
- Equal sets

Two sets are said to be equal if both have same elements.

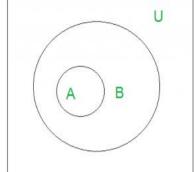
For example $A = \{1, 3, 9, 7\}$ and $B = \{3, 1, 7, 9\}$ are equal sets.

NOTE: Order of elements of a set doesn't matter.

• Subset:

A set A is said to be **subset** of another set B if and only if every element of set A is also an element of other set Denoted by ' \subseteq '.

'A \subseteq B 'denotes A is a subset of B.



U' denotes the universal set. Above Venn diagram shows that A is Subset of B.

Size of the set S is known as Cardinality number, denoted as |S|.

Example: Let A be a set of odd positive integers less than 10. Solution: $A = \{1,3,5,7,9\}$, Cardinality of the set is 5, i.e., |A| = 5.

Note: Cardinality of null set is 0.

• **Power Sets** Power set is the set all possible subset of the set S. Denoted by P(S). Example : What is the power set of {0,1,2}?

```
Solution: {Ø}, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}.
```

Note :

- Empty set and set itself is also member of this set of subsets.
- Cardinality of power set is 2^n , where n is number of element in a set.

Cartesian Products

Let A and B be two sets. Cartesian product of A and B is denoted by $A \times B$, is the set of all ordered pairs (a,b), where a belong to A and B belong to B.

RELATIONS

Relation or Binary relation R from set A to B is a subset of AxB which can be defined as $aRb \ll (a,b) \in R \ll R(a,b)$.

For two distinct set, A and B with cardinalities m and n, the maximum cardinality of the relation R from A to B is mn

Domain and Range:

Given two sets A and B and Relation from A to B is R (a,b),

Domain is defined as the set= $\{a \mid (a,b) \in \mathbb{R} \text{ for some } b \text{ in } B\}$

Range is defined as the set = $\{b \mid (a,b) \in \mathbb{R} \text{ for some } a \text{ in } A\}$.

Types of Relation:

1. Empty Relation: A relation R on a set A is called Empty if the set A is empty set.

2.**Reflexive Relation:** A relation R on a set A is called reflexive if $(a,a) \in \mathbb{R}$ for every element $a \in A$.i.e. if set $A = \{a,b\}$ then $\mathbb{R} = \{(a,a), (b,b)\}$ is reflexive relation.

3.**Symmetric Relation:** A relation R on a set A is called symmetric if (b,a) $\in \mathbb{R}$ when (a,b) $\in \mathbb{R}$.

i.e. The relation $R = \{(4,5), (5,4), (6,5), (5,6)\}$ on set $A = \{4,5,6\}$ is symmetric.

4.Transiitive Relation: A relation R on a set A is called transitive if $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R}$ then $(a,c) \in \mathbb{R}$

for all a,b,c \in A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive. 5..**Equivalence Relation:** A relation is an Equivalence Relation if it is reflexive, symmetric, and transitive

The relation $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2), (1,3), (3,1)\}$ on set $A = \{1,2,3\}$ is equivalence relation as it is reflexive, symmetric, and transitive.

FUNCTIONS:

One-one function:(injective function)

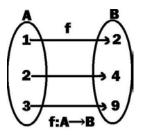
A Function is said to be a One-To-One Function if every element of Domain of the function have its own and unique element in Range of the Function.

A function from <u>set</u> A to <u>set</u> B is said to be a One-To-One <u>Function</u> if no two or more elements of set A have same same elements mapped or imaged in set B.

i.e. if f: $X \rightarrow Y$ then for every $x_1, x_2 \in X$

if $f(x_1)=f(x_2)$ then $x_1=x_2$

example: The function $f:N \rightarrow N$ given by $f(x)=x^2$ is one -one



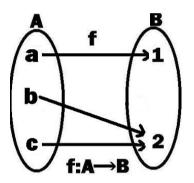
Onto function(surjective function)

A function $f:X \rightarrow Y$ is said to be onto function if every element of Y is an image of some element of X i.e. for every y in Y there exists x in X such that f(x)=y

Example:

If set $A = \{a,b,c\}$ and set $B = \{1,2\}$

And "f" is a onto function such that f: $A \rightarrow B$ is defined by:



Bijective function:

A function f:X \rightarrow Y is said to be bijective function if f is both one-one and onto function

Inverse function:

A function $f:X \rightarrow Y$ is said to be invertible if is both one-one and onto ,then $f^{-1}:Y \rightarrow X$ is said to be inverible function and $f^{-1}(y)=x$.

MATHEMATICAL LOGIC

Proposition:

A proposition is defined as a declarative sentence that is either True or False, but not both. The **Truth Value** of a proposition is True(denoted as T) if it is a true statement, and False(denoted as F) if it is a false statement. For Example,

1.Bangalore is in Karnataka

2."f" is a vowel

3.sun rises in east and sets in west.

Logical connectives:

1. NEGATION:

If p is a proposition then \sim p is called the negation.

the truth table for negation

р	~p
Т	F
F	Т

2.CONJUNCTION:

Two simple proposition p&q are connected by the connective "and", the compound proposition is called conjuction, denoted by $p\land q$

The truth table for $p \land q$

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

3.DISJUNCTION:

Two simple proposition p & q are connected by the connective "OR", the compound proposition thus obtained is called disjunction, denoted by $p \lor q$

р	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

4.IMPLICATION:(conditional)

Two simple proposition p and q are connected with the connective" if then", the resulted compound proposition thus obtained is called implication, denoted by $p \rightarrow q$

р	q	p→ q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

5.DOUBLE IMPLICATION:

Two simple proposition p and q are connected with the connective" if aand only if ", the resulted compound proposition thus obtained is called double implication , denoted by $p \leftrightarrow q$

The truth table is

р	q	p↔ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т