DATA BASE MANAGEMENT SYSTEMS

Unit - IV

Relational Database Language: Data definition in SQL, Queriesin SQL,
Insert, Delete and Update Statements in SQL, Views in SQL,
Specifying General Constraints as Assertions, specifying indexes,
Embedded SQL. PL /SQL: Introduction .

Relational Database Language

SQL

e SQL stands for Structured Query Language

e SQL lets you access and manipulate databases

e SQL is an ANSI (American National Standards Institute) standard

SQL is a declarative (non-procedural)language. SQL is (usually) not case-sensitive,
but we'll write SQL keywords in upper case for emphasis.

Some database systems require a semicolon at the end of each SQL statement.

A table is database object that holds user data. Each column of the table will have
specified data type bound to it. Oracle ensures that only data, which is identical to

the datatype of the column, will be stored within the column.



Tuples— __ | 45 Mohith G Kalyan

Relation Name Attributes

v
Student_Table // \

Regno Name Gender DOB Course
101 (Varsh G Kalyan F 20-Sep-1985 BCA
20-Aug-1980 BEM

M
% 103 |Nisarga - 15-Jul-1983 | BCom
104 [(Eenchara F 04-Dec-1985 BCA

Fig: The attributes and tuples of a relation STUDENT_Table

SQL DML and DDL
SQL can be divided into two parts:

The Data Definition Language (DDL) and the Data Manipulation Language (DML).

Data Definition Language (DDL)

It is a set of SQL commands used to create, modify and delete database structure

but not data. It also define indexes (keys), specify links between tables, and

impose constraints between tables. DDL commands are auto COMMIT.

The most important DDL statements in SQL are:

CREATE TABLE - creates a new table
ALTER TABLE - modifies a table

TRUNCATE TABLE- deletes all records from a table
DROP TABLE - deletes a table

Data Manipulation Language (DML)

It is the area of SQL that allows changing data within the database. The query

and update commands form the DML part of SQL.:

e INSERT - inserts new data into a database

e SELECT - extracts data from a database
e UPDATE - updates data in a database
e DELETE - deletes data from a database



Data Control Language (DCL)

It is the component of SQL statement that control access to data and to the
database. Occasionally DCL statements are grouped with DML Statements.

* COMMIT -Save work done.
®* SAVEPOINT - Identify a point in a transaction to which you can later rollback.
* ROLLBACK - Restore database to original since the last COMMIT.

* GRANT - gives user’s access privileges to database.

e REVOKE - withdraw access privileges given with GRANT command.

Basic Data Types

Data Type Description

This data type is used to store character strings values of fixed length.
The size in brackets determines the number of characters the cell can
CHAR(size) hold. The maximum number of character(ie the size) this data type can
hold is 255 characters. The data held is right padded with spaces to

whatever length specified.

This data type is used to store variable length alphanumeric data. It is
more flexible form of CHAR data type. VARCHAR can hold 1 to 255

VARCHAR(size) characters. VARCHAR is usually a wiser choice than CHAR, due to its
/ variable length format characteristic. But, keep in mind, that CHAR is

much faster than VARCHAR, sometimes up to 50%.
VARCHAR2(size)

This data type is used to represent data and time. The standard format
is DD-MMM-YY. Date Time stores date in the 24-hour format. By

DATE default, the time in a date field is 12:00:00am.

The NUMBER data type is used to store numbers(fixed or floating
point). Number of virtually any magnitude maybe stored up to 38
NUMBER(P,S) digits of precision.

The Precision(P), determines the maximum length of the data, whereas
the scale(S), determine the number of places to the right of the
decimal.

Example: Number(5,2) is a number that has 3 digits before the

decimal and 2 digits after the decimal.

This data type is used to store variable length character strings

containing up to 2GB. LONG data can be used to store arrays of binary

LONG data in ASCII format. Only one LONG value can be defined per table.




RAW / The RAW / LONG RAW data types are used to store binary data, such

LONG RAW as digitized picture or image. RAW data type can have maximum

length of 255 bytes. LONG RAW data type can contain up to 2GB.

The CREATE TABLE Command:

The CREATE TABLE command defines each column of the table uniquely. Each
column has a minimum of three attributes, name, datatype and size(i.e column
width).each table column definition is a single clause in the create table syntax.
Each table column definition is separated from the other by a comma. Finally, the
SQL statement is terminated with a semi colon.
Rules for Creating Tables

A name can have maximum upto 30 characters.

Alphabets from A-Z, a-z and numbers from 0-9 are allowed.

A name should begin with an alphabet.

The use of the special character like _(underscore) is allowed.

SQL reserved words not allowed. For example: create, select, alter.

Syntax:
CREATE TABLE <tablename>
(<columnNamel> <Datatype>(<size>),
<columnName2> <Datatype>(<size>), ....... )

Example:
CREATE TABLE gktab
(Regno NUMBER(3),
Name VARCHAR(20),
Gender CHAR,
Dob DATE,
Course CHAR(5S));



Inserting Data into Tables

Once a table is created, the most natural thing to do is load this table with data to
be manipulated later.

When inserting a single row of data into the table, the insert operation:

Creates a new row(empty) in the database table.
Loads the values passed(by the SQL insert) into the columns specified.

Syntax:
INSERT INTO <tablename>(<columnnamel>, <columnname2>, ..)

Values(<expressionl>,<expression2>...);

Example:
INSERT INTO gktab(regno,name,gender,dob,course)
VALUES(101,'Varsh G Kalyan’,'F’,’20-Sep-1985’,’'BCA");

Or you can use the below method to insert the data into table.

INSERT INTO gktab VALUES(102,’'Mohith G Kalyan’,'M’,’20-Aug-1980’,'BBM");
INSERT INTO gktab VALUES(106,'Nisarga’,’F’,"15-Jul-1983’,'BCom’);

INSERT INTO gktab VALUES(105,’Eenchara’,’F’,’04-Dec-1985','BCA");
INSERT INTO gktab VALUES(103,’Ravi K’,'M’,’29-Mar-1989’,'BCom’);

INSERT INTO gktab VALUES(104,’Roopa’,’F’,’17-Jan-1984’,'BBM’);

Whenever you work on the data which has data types like
CHAR,VARCHAR/VARCHAR?2, DATE should be used between single quote(*)



Viewing Data in the Tables

Once data has been inserted into a table, the next most logical operation would be
to view what has been inserted. The SELECT SQL verb is used to achieve this. The

SELECT command is used to retrieve rows selected from one or more tables.

All Rows and All Columns
SELECT * FROM <tablename>
SELECT * FROM gktab;

It shows all rows and column data in the table

Regno Name Gender Dob Course
101 [Varsh G Kalyan F 20-Sep-1985 BCA

102 [Mohith G Kalyan M 20-Aug-1980 BBM

106 [Nisarga F 15-Jul-1983 BCom
105 |Eenchara F 04-Dec-1985 BCA
103 [Ravi K M 29-Mar-1989 | BCom
104 |Roopa F 17-Jan-1984 BEM

Filtering Table Data

While viewing data from a table it is rare that all the data from the table will be
required each time. Hence, SQL provides a method of filtering table data that is
not required.

The ways of filtering table data are:

Selected columns and all rows
Selected rows and all columns
Selected columns and selected rows

Selected Columns and All Rows
The retrieval of specific columns from a table can be done as shown below.

Syntax



SELECT <columnnamel1>, <Columnname2> FROM <tablename>
Example
Show only Regno, Name and Course from gktab.

SELECT Regno, Name, Course FROM gktab;

Regno Name Course

101 [Varsh G Kalyan BCA

102 [Mohith G Kalyan BBM

106 [Nisarga BCom
105 |Eenchara BCA
102 |RaviK BCom
104 |Roopa BBM

Selected Rows and All Columns

The WHERE clause is used to extract only those records that fulfill a specified
criterion.

When a WHERE clause is added to the SQL query, the Oracle engine compares
each record in the table with condition specified in the WHERE clause. The Oracle

engine displays only those records that satisfy the specified condition.

Syntax
SELECT * FROM <tablename> WHERE <condition>;
Here, <condition> is always quantified as <columnname=value>

When specifying a condition in the WHERE clause all standard operators such as

logical, arithmetic and so on, can be used.



Example-1:

Example-2:

Display all the students from BCA.

SELECT * FROM gktab WHERE Course="BCA’;

Regno Name Gender Dob Course
101 |Varsh G Kalyan F 20-Sep-1985 BCA
105 |Eenchara F 04-Dec-1985 BCA




Display the student whose regno is 102.

SELECT * FROM gktab WHERE Regno=102;

Regno Name Gender Dob Course

102 |Mohith G Kalyan M 20-Aug-1980 BBM

Selected Columns and Selected Rows
To view a specific set of rows and columns from a table

When a WHERE clause is added to the SQL query, the Oracle engine compares
each record in the table with condition specified in the WHERE clause. The Oracle
engine displays only those records that satisfy the specified condition.

Syntax

SELECT <columnnamel>, <Columnname2> FROM <tablename>

WHERE <condition>;
Example-1:
List the student’s Regno, Name for the Course BCA.

SELECT Regno, Name FROM gktab WHERE Course='BCA’;

Regno Name

101 |Varsh G Kalyan
105 |[Eenchara

Example-2:
List the student’s Regno, Name, Gender for the Course BBM.

SELECT Regno, Name, Gender FROM gktab WHERE Course="BBM’;

Regno Name Gender
102 |Mohith G Kalyan M
104 |Roopa F




Eliminating Duplicate Rows when using a SELECT statement

A table could hold duplicate rows. In such a case, to view only unique rows the
DISTINCT clause can be used.

The DISTINCT clause allows removing duplicates from the result set. The
DISTINCT clause can only be used with SELECT statements.

The DISTINCT clause scans through the values of the column/s specified and

displays only unique values from amongst them.

Syntax
SELECT DISTINCT <columnnamel>, <Columnname2>
FROM <Tablename>;

Example:
Show different courses from gktab

SELECT DISTINCT Course from gktab;

Course

BCA

BBM

BCom

Sorting Data in a Table

Oracle allows data from a table to be viewed in a sorted order. The rows retrieved
from the table will be sorted in either ascending or descending order depending

on the condition specified in the SELECT sentence.

Syntax
SELECT * FROM <tablename>

ORDER BY <Columnnamel>,<Columnname2> <[Sort Order]>;

The ORDER BY clause sorts the result set based on the column specified. The



ORDER BY clause can only be used in SELECT statements.

The Oracle engine sorts in ascending order by default

Example-1:

Show details of students according to Regno.
SELECT * FROM gktab ORDER BY Regno;

Regno Name Gender Dob Course
101 ||Varsh G Kalyan F 20-Sep-1985 BCA
102 |[Mohith G Kalyan M 20-Aug-1980 BEM
103 ||Ravi K M 29-Mar-1989 BCom
104 ||Roopa F 17-Jan-1984 BEM
105 ||Eenchara F 04-Dec-1985 BCA
106 ||Nisarga F 15-Jul-1983 BCom

Regno Sorted

Example-2:

Show the details of students names in descending order.

SELECT * FROM gktab ORDER BY Name DESC;

Regno Name Gender Dob Course
101 |Varsh G Kalyan F 20-Sep-1985 BCA
104 |Roopa F 17-Jan-1984 BBM
103 |RaviK M 29-Mar-1989 BCom
106 |Nisarga F 15-Jul-1983 BCom
102 |Mohith G Kalyan M 20-Aug-1980 BEM
105 |Eenchara F 04-Dec-1985 BCA

J

Name Sorted in

descending order

DELETE Operations

The DELETE command deletes rows from the table that satisfies the condition
provided by its WHERE clause, and returns the number of records deleted.

The verb DELETE in SQL is used to remove either

Specific row(s) from a table
OR
All the rows from a table




Removal of Specific Row(s)
Syntax:

DELETE FROM tablename WHERE Condition;
Example:

DELETE FROM gktab WHERE Regno=103;
1 rows deleted

SELECT * FROM gktab;

Regno Name Gender Dob Course
101 |Varsh G Kalyan F 20-Sep-1985 BCA
102 |Mohith G Kalyan M 20-Aug-1980 BBM
106 |Nisarga F 15-Jul-1983 BCom
105 |Eenchara F 04-Dec-1985 BCA
104 |Roopa F 17-Jan-1984 BBM

In the above table, the Regno 103 is deleted from the table

Remove of ALL Rows
Syntax
DELETE FROM tablename;

Example

DELETE FROM gktab;
6 rows deleted

SELECT * FROM gktab;
no rows selected

Once the table is deleted, use Rollback to undo the above operations.

UPDATING THE CONTENTS OF A TABLE
The UPDATE Command is used to change or modify data values in a table.
The verb update in SQL is used to either updates:

ALL the rows from a table.
OR



A select set of rows from a table.

Updating all rows

The UPDATE statement updates columns in the existing table’s rows with a new
values. The SET clause indicates which column data should be modified and the
new values that they should hold. The WHERE clause, if given, specifies which

rows should be updated. Otherwise, all table rows are updated.

Syntax:

UPDATE tablename

SET columnnamel=expressionl, columnname2=expression2;

Example: update the gktab table by changing its course to BCA.

UPDATE gktab SET course='BCA’;
6 rows updated

SELECT * FROM gktab;

Regno Name Gender Dob Course
101 [Varsh G Kalyan F 20-Sep-1985 BCA
102 |Mohith G Kalyan M 20-Aug-1980 BCA
106 |Nisarga F 15-Jul-1983 BCA
105 |Eenchara F 04-Dec-1985 BCA
103 Ravi K M 29-Mar-1989 BCA
104 |Roopa F 17-]an-1984 BCA




In the above table, the course is changed to BCA for all the rows in the table.
Updating Records Conditionally
If you want to update a specific set of rows in table, then WHERE clause is used.
Syntax:
UPDATE tablename
SET Columnnamel=Expressionil, Columnname2=Expression2
WHERE Condition;

Example:

Update gktab table by changing the course BCA to BBM for Regno 102.
UPDATE gktab SET Course='BBM’ WHERE Regno=102;
1 rows updated
SELECT * FROM gktab;

Regno Name Gender Dob Course
101 |Varsh G Kalyan F 20-Sep-1985 BCA
102 |Mohith G Kalyan ™M 20-Aug-1980 BBM
106 |Nisarga F 15-Jul-1983 BCA
105 |Eenchara F 04-Dec-1985 BCA
103 |RaviK M 29-Mar-1989 BCA
104 Roopa F 17-Jan-1984 BCA

MODIFYING THE STRUCTURE OF TABLES

The structure of a table can be modified by using the ALTER TABLE command.



ALTER TABLE allows changing the structure of an existing table. With ALTER
TABLE if is possible to add or delete columns, create or destroy indexes,
change the data type of existing columns, or rename columns or the table
itself.

ALTER TABLE works by making a temporary copy of the original table. The
alteration is performed on the copy, then the original table is deleted and the new
one is renamed. While ALTER TABLE is executing, the original table is still
readable by the users of ORACLE.

Restrictions on the ALTER TABLE

The following task cannot be performed when using the ALTER TABLE Clause:
Change the name of the table.
Change the name of the Column.

Decrease the size of a column if table data exists.

ALTER TABLE Command can perform
Adding New Columns.
Dropping A Column from a Table.
Modifying Existing Columns.

Adding New Columns

Syntax:
ALTER TABLE tablename
ADD(NewColumnnamel Datatype(size),

NewColumnname2 Datatype(size).....);

Example: Enter a new filed Phno to gktab.
ALTER TABLE gktab ADD(Phno number(10));

The table is altered with new column Phno



Select * from gktab;

Regno Name Gender Dob Course | Phno
101 ([Varsh G Kalyan F 20-Sep-1985 BCA
102 [Mohith G Kalyan M 20-Aug-1980 BBM
106 |Nisarga F 15-Jul-1983 | BCom
105 |Eenchara F 04-Dec-1985 BCA
103 |Ravi K M 29-Mar-1989 | BCom
104 |Roopa F 17-]an-1984 BBM

You can also use DESC gktab, to see the new column added to table.

Dropping A Column from a Table.

Syntax:

ALTER TABLE tablename DROP COLUMN Columnname;

Example: Drop the column Phno from gktab.
ALTER TABLE gktab DROP COLUMN Phno;

The table is altered, the column Phno is removed from the table.

Select * from gktab;

Regno Name Gender Dob Course
101 [Varsh G Kalyan F 20-Sep-1985 BCA
102 [Mohith G Kalyan M 20-Aug-1980 BEM
106 [Nisarga F 15-Jul-1983 BCom
105 |Eenchara F 04-Dec-1985 BCA
103 |RaviK M 29-Mar-1989 | BCom
104 |Roopa F 17-Jan-1984 BBM

You can also use DESC gktab, to see the column removed from the table.




Modifying Existing Columns.
Syntax:
ALTER TABLE tablename
MODIFY(Columnname Newdatatype(Newsize));

Example:
ALTER TABLE gktab MODIFY(Name VARCHAR(25));

The table altered with new size value 25.

DESC gktab;

RENAMING TABLES
Oracle allows renaming of tables. The rename operation is done atomically, which
means that no other thread can access any of the tables while the rename process
is running.
Syntax

RENAME tablename TO newtablename;

TRUNCATING TABLES
TRUNCATE command deletes the rows in the table permanently.

Syntax:
TRUNCATE TABLE tablename;

The number of deleted rows are not returned. Truncate operations drop and re-
create the table, which is much faster than deleting rows one by one.
Example:

TRUNCATE TABLE gktab;

Table truncated i.e., all the rows are deleted permanently.



DESTROYING TABLES
Sometimes tables within a particular database become obsolete and need to be
discarded. In such situation using the DROP TABLE statement with table name
can destroy a specific table.
Syntax:
DROP TABLE tablename;

Example:

DROP TABLE gktab;
If a table is dropped all the records held within and the structure of the table is

lost and cannot be recovered.

COMMIT and ROLLBACK

Commit
Commit command is used to permanently save any transaction into database.
SQL> commit;
Rollback
Rollback is used to undo the changes made by any command but only before a
commit is done. We can't Rollback data which has been committed in the database
with the help of the commit keyword or DDL Commands, because DDL commands
are auto commit commands.
SQL> Rollback;



Difference between DELETE and DROP.
The DELETE command is used to remove rows from a table. After performing a
DELETE operation you need to COMMIT or ROLLBACK the transaction to make the

change permanent or to undo it.

The DROP command removes a table from the database. All the tables' rows,

indexes and privileges will also be removed. The operation cannot be rolled back.

Difference between DELETE and TRUNCATE.
The DELETE command is used to remove rows from a table. After performing a
DELETE operation you need to COMMIT or ROLLBACK the transaction to make the

change permanent or to undo it.

TRUNCATE removes all rows from a table. The operation cannot be rolled back.

Difference between CHAR and VARCHAR.

CHAR

1. Used to store fixed length data.
2. The maximum characters the data type can hold is 255 characters.
3. It's 50% faster than VARCHAR.
4. Uses static memory allocation.

VARCHAR

1. Used to store variable length data.

2. The maximum characters the data type can hold is up to 4000 characters.
3. It's slower than CHAR.

4. Uses dynamic memory allocation.



DATA CONSTRINTS

Oracle permits data constraints to be attached to table column via SQL syntax that
checks data for integrity prior storage. Once data constraints are part of a table
column construct, the oracle database engine checks the data being entered into a
table column against the data constraints. If the data passes this check, itis
stored in the table column, else the data is rejected. Even if a single column of the
record being entered into the table fails a constraint, the entire record is rejected

and not stored in the table.

Both CREATE TABLE and ALTER TABLE SQL verbs can be used to write SQL
sentences that attach constraints to a table column.

The constraints are a keyword. The constraint is rules that restrict the values for
one or more columns in a table. The Oracle Server uses constraints to prevent
invalid data entry into tables. The constraints store the validate data and without
constraints we can just store invalid data. The constraints are an important part of
the table.

Types of DATA CONSTRAINTS

CONSTRAINTS
Input-Output Constraints Business Rule Constraints
a) Primary Key Constraint a) Check Constraint
b) Foreign Key Constraint b) NOT NULL Constraint

c) Unique Key Constraint



Primary Key Constraint

A primary key can consist of one or more columns on a table. Primary key
constraints define a column or series of columns that uniquely identify a given row
in a table. Defining a primary key on a table is optional and you can only define a
single primary key on a table. A primary key constraint can consist of one or many
columns (up to 32). When multiple columns are used as a primary key, they are
called a composite key. Any column that is defined as a primary key column is
automatically set with a NOT NULL status. The Primary key constraint can be

applied at column level and table level.

Foreign Key Constraint

A foreign key constraint is used to enforce a relationship between two tables. A
foreign key is a column (or a group of columns) whose values are derived from the
Primary key or unique key of some other table.

The table in which the foreign key is defined is called a Foreign table or Detail
table. The table that defines primary key or unique key and is referenced by the
foreign key is called Primary table or Master table.

The master table can be referenced in the foreign key definition by using the
clause REFERENCES Tablename.ColumnName when defining the foreign key,
column attributes, in the detail table. The foreign key constraint can be applied at

column level and table level.

Unique Key Constraint

Unique key will not allow duplicate values. A table can have more than one Unique
key. A unique constraint defines a column, or series of columns, that must be
unique in value. The UNIQUE constraint can be applied at column level and table

level.



CHECK Constraint

Business Rule validation can be applied to a table column by using CHECk
constraint. CHECK constraints must be specified as a logical expression that
evaluates either to TRUE or FALSE.

The CHECK constraint ensures that all values in a column satisfy certain
conditions. Once defined, the database will only insert a new row or update an
existing row if the new value satisfies the CHECK constraint. The CHECK
constraint is used to ensure data quality.

A CHECK constraint takes substantially longer to execute as compared to NOT
NULL, PRIMARY KEY, FOREIGN KEY or UNIQUE. The CHECK constraint can be
applied at column level and table level.

NOT NULL Constraint

The NOT NULL column constraint ensures that a table column cannot be left
empty.

When a column is defined as not null, then that column becomes a mandatory
column. The NOT NULL constraint can only be applied at column level.

Example on Constraints

Consider the Table shown below

gkemp gksal

| empid | ename | emailid | leid |esalary |

SQL> create table gkemp{empid number(3) primary key,
2 ename varchar{20) not null,
3 emailid varchar(15) unique);

Table created.

SQL> create table gksal{eid number(3) references gkemp(empid),
2 esal number(5) check{esal between 50060 and 900068));

Table created.



Arithmetic Operators

Oracle allows arithmetic operators to be used while viewing records from a table or

while performing data manipulation operations such as insert, updated and delete.
These are:

+  Addition

- Subtraction
Division

* Multiplication

() Enclosed Operations

Consider the below employee table(gkemp)

SQL> select * from gkemp;

EMPID ENAME ESAL
101 Nisarga 8500
182 Varsha G Kalyan 1506080
183 Eenchara 50080
184 Mohith G Kalyan 125068

1085 Kavitha 18000



SQL> select esal,esal+250808 from gkemp;

ESAL ESAL+25880

85008 1168600
150800 175080
508008 7500
125080 150068808
18800 28500

85008 808008
1508080 14580
586806 4500
125080 1200680
180800 175080

SQL> select esal, esal/s188 from gkemp;

ESAL ESAL/10806

8588 85
15800 158
58008 50
125080 125
18000 180

SQL> select esal, esal>18 from gkemp;

ESAL ESAL>*10
850890 85080806
15080608 150000
5080606 508060606
125080 125000
18000 180000

SQL> select esal,(18+esal)/16868 from gkemp;

ESAL (18+ESAL)/1088

8500 85.1
15060680 1506.1
5008 508.1
1250806 125 .1

180606806 186.1



Special Note

The DUAL table is a special one-row, one-column table present by default in

Oracle and other database installations. Dual is a dummy table.

SQL> select (108+1560) from dual;

(180+15608)

SQL> select (250-34) from dual;
(250-34)

SOL> select (24%10) from dual;
(24%10)

SQL> select (24+32/4-24) from dual;

(24+32/4-24)

Logical Operators

Logical operators that can be used in SQL sentence are:

AND Operators
OR Operators
NOT Operators

Operators Description
OR :-For the row to be selected at least one of the conditions must be true.

AND :-For a row to be selected all the specified conditions must be true.

NOT :-For a row to be selected the specified condition must be false.



Consider the below employee table(gkemp)

SQL> select = from gkemp;

EMPID ENAME ESAL DEPARTHMENT
181 Nisarga 8500 Commerce
162 Varsha G Kalyan 15000 Computer Science
183 Eenchara 56008 Commerce
104 Mohith G Kalyan 1256808 Computer Science
105 Kavitha 18000 Arts

For example: if you want to find the names of employees who are working either
in Commerce or Arts department, the query would be like,

SQL> select = from gkemp
2 where department='Commerce' or department="Arts’;

EMPID ENAME ESAL DEPARTHMENT
181 Nisarga 8500 Commerce
183 Eenchara 5000 Commerce
105 Kavitha 1806080 Arts

For example: To find the names of the employee whose salary between10000 to
20000, the query would be like,

SQL> select * from gkemp
2 where esal>=108000 and esal<=20000;

EMPID ENAME ESAL DEPARTHENT
102 Varsha G Kalyan 1500808 Computer Science
164 Mohith G Kalyan 12560 Computer Science

185 Kavitha 18080 Arts



For example: If you want to find out the names of the employee who do not
belong to computer science department, the query would be like,

SQL> select * from gkemp
2 where not department='Computer Science’;

EMPID ENAME ESAL DEPARTHMENT
101 Nisarga 8500 Commerce
183 Eenchara 56808 Commerce
1085 Kavitha 180080 Arts

Range Searching (BETWEEN)

In order to select the data that is within a range of values, the BETWEEN operator
is used. The BETWEEN operator allows the selection of rows that contain values
within a specified lower and upper limit. The range coded after the word BETWEEN
is inclusive.

The lower value must be coded first. The two values in between the range must be
linked with the keyword AND. The BETWEEN operator can be used with both

character and numeric data types. However, the data types cannot be mixed.

For example: Find the names of the employee whose salary between10000 and
20000, the query would be like,

SQL> select * from gkemp
2 where esal between 10000 and 2006060;

EMPID ENAME ESAL DEPARTHMENT
102 VUarsha G Kalyan 1508080 Computer Science
104 Mohith G Kalyan 125808 Computer Science

1085 Kavitha 180080 Arts



Pattern Matching (LIKE, IN, NOT IN)
LIKE

The LIKE predicate allows comparison of one string value with another string
value, which is not identical. this is achieved by using wild characters. Two wild
characters that are available are:

For character data types:

% allows to match any string of any length (including zero length).

__allows to match on a single character.

SQL> select = from company;

COMPANY_ID COMPANY_NAME COMPANY_CITY
801 Aarti Industries Mumbai
802 ABB India Ltd Bangalore
803 Adani Power Ltd Ahmedbad
804 Balmer Lawrie Kolkata
805 Biocon Ltd Bangalore
806 Minda Industries Ltd Gurgaon

SQL> select = from company where company_name like ‘A%';

COMPANY_ID COMPANY_NAME COMPANY_CITY

801 AQrti Industries Mumbai

862 ABB India Ltd Bangalore

8083 |[Adani Power Ltd Ahmedbad
SQL> select * from company where COMPANY_CITY like '_u%‘;
COMPANY_ID COMPANY_NAME COMPANY_CITY

801 Aarti Industries MEbbai

8086 Minda Industries Ltd Gurgaon



IN

The IN operator is used when you want to compare a column with more than one
value. It is similar to an OR condition.

For example: If you want to find the names of company located in the city
Bangalore, Mumbai, Gurgaon, the query would be like,

SQL> select * from company
2 where company_city in{'Bangalore’,'Mumbai’, 'Gurgaon’);

COMPANY_ID COMPANY_NAME COMPANY_CITY
881 Aarti Industries Mumbai
8062 ABB India Ltd Bangalore
8685 Biocon Ltd Bangalore
806 Minda Industries Ltd Gurgaon
NOT IN

The NOT IN operator is opposite to IN.

For example: If you want to find the names of company located in the other city
of Bangalore, Mumbai, Gurgaon, the query would be like,

SQL> select = from company
2 where company city not in('Bangalore’,'Mumbai’,’'Gurgaon’);

COMPANY_ID COMPANY_NAME COMPANY_CITY

803 Adani Power Ltd Ahmedbad
804 Balmer Lawrie Kolkata



Column Aliases(Renaming Columns) in Oracle:

Sometimes you want to change the column headers in the report. For this you can
use column aliases in oracle. Oracle has provided excellent object oriented
techniques as its robust database. It always good to practice and implement

column aliases since it will make your code readable while using this columns.

to add column aliases to your sqgl queries.
Give a column alias name separated by space after the column name.
Select DOB DateofBirth from gkstudent

In the above query, the word in bold is column aliases.

ORACLE FUNCTIONS

Oracle functions serve the purpose of manipulating data items and returning a
result. Functions are also capable of accepting user-supplied variables or constants
and operating on them. Such variables or constants are called arguments. Any
number of arguments( or no arguments at all) can be passed to a function in the
following format.

Function_Name(argumentsl,arguments2.....)

Oracle functions can be clubbed together depending upon whether they operate on
a single row or a group of rows retrieved from a table. Accordingly, functions can
be classified as follows:

Group Functions(Aggregate Functions)
Function that act on a set of values are called group functions.
Scalar Functions(Single Row Functions)

Function that act on only one value at a time are called scalar functions.



String Functions: for string data type
Numeric functions: for Number data type
Conversion function: for conversion of one data type to another.

Date conversions: for date data type.

a) SQL Aggregate / Group Functions

Group functions return results based on groups of rows, rather than on single
rows. returns the number of rows in the query.SQL aggregate functions return a
single value, calculated from values in a column.

Useful aggregate functions:

a) COUNT() - Returns the number of rows
b) AVG() - Returns the average value

c) MAX() - Returns the largest value

d) MIN() - Returns the smallest value

e) SUM() - Returns the total sum

Consider the below employee table(gkemp)

SQL> select * from gkemp;

EMPID ENAME ESAL
101 Nisarga 8500
182 Varsha G Kalyan 1506080
183 Eenchara 50080
184 Mohith G Kalyan 125068
105 Kavitha 18000
a) COUNT()

The COUNT() function counts number of values present in the column

excluding Null values.

SQL> select count{empid) as totalemployee from gkemp;

TOTALEMPLOYEE



b) AVG()
The AVG() function returns the average value of a column specified.

SQL> select avg(esal) as averagesalary from gkemp;

AVERAGESALARY

c) MAX()

The MAX() function returns the highest value of a particular column.

SQL> select max(esal) as maximumsalary from gkemp;

MAXIMUMSALARY

d) MIN()
The MIN() function returns the smallest value of a particular column.
SQL> select min{esal) as minimumsalary from gkemp;

MINIMUMSALARY

e) SUM()

The SUM() function returns the sum of column values.

SQL> select sum{esal) as totalsalary from gkemp;

TOTALSALARY



b) SQL String Functions

SQL string functions are used primarily for string manipulation. The following table

details the important string functions:

SQL Command

Meaning

It used for concatenation.

INITCAP Return a string with first letter of each word in upper case.

LENGTH Return the length of a word.

LOWER Returns character, with all letters forced to lowercase.

UPPER Returns character, with all letters forced to uppercase.

LPAD Returns character, left-padded to length n with sequence of
character specified.

RPAD Returns character, right-padded to length n with sequence of
character specified.

LTRIM Removes characters from the left of char with initial characters
removed upto the first character not in set.

RTRIM Returns characters, with final characters removed after the last
character not in the set.

SUBSTR Returns a portion of characters, beginning at character m, and
going upto character n. if n is omitted, it returns upto the last
character in the string. The first position of char is 1.

INSTR Returns the location of substring in a string.




SQL> select ("Ashok’) || ("Kumar®') as name from dual;
AshokKumar

SQL> select initcap('nisarga’) as name from dual;
Nisarga

SQL> select length{‘'Varsha G Kalyan') as name from dual;

SQL> select lower{ " PRAKRUTHI®) as name from dual;
prakruthi

SQL> select upper{’'Computer Science') as name from dual;
COMPUTER SCIENCE

SQL> select l1lpad{'sir’',4,'r') as name from dual;

NAME

rsir

SQL> select rpad({'sir',6,'r') as name from dual;

Sirrry




S0L> select ltrim{'Roopa“,'R") as name from dual;

HAME

popa
S0L> select rtrim('Raman’,'n’) as name from dual;
NAME

Rama

SOL> select substr('SECURE®,3,%) as name from dual;

HAME

GURE

SQL> select instr{'Oracle’',’'c') as name from dual;




Date Conversion Functions

SQL Command

Meaning

SYSDATE

It shows the system date.

ADD_MONTHS(d, n)

Returns date after adding the number of months
specified in the function.

LAST_DAY(d)

Returns the date of the month specified with the
function.

MONTHS_BETWEEN(d1,d2)

Returns number of months between d1 and d2.

NEXT-DAY(date, char)

Returns the date of the first weekday named by char
that is after the date named by date. char must be a
day of the week

ROUND(date, [format])

Returns a date rounded to a specific unit of measure.
If the second parameter is omitted, the ROUND
function will round the date to the nearest day.

Conversion

Functions

TO_DATE(<char
value>[,<format>])

Converts a character field to a date field

TO-CHAR(<date
value>[,<format>])

Converts a date field to a character field

SQL> select sysdate "date' from dual;

18-JAN-15

SQL> select add_months{sysdate,4) "Add Months" from dual;

Add HMonth

18-MAY-15

SQL> select sysdate, last_day(sysdate) "LastDay' from dual;

SYSDATE LastDay

18-JAN-15 31-JAN-15




SQL> select HMonths_between('02-aug-2615','062-Feb-2615") "months" from dual;

months

SQL> select Months_between('02-Feb-2615','062-aug-2615"') "months" from dual;

months

SQL> select next_day{'31-jan-20815"', 'Saturday’) "Next Day'" from dual;
Next Day
07-FEB-15
SQL> select next_day({'31-jan-2815"', "Sunday’') *"Next Day" from dual;
Next Day

81-FEB-15

SQL> select round(to_date('81-jan-2015'),'YYYY"') "year" from dual;

81-JAN-15
SQL> select round(to_date('B81-aug-2615"), 'YYYY"') "year" from dual;

81-JAN-16



SET OPERATORS and JOINS

Set Operators

Consider the below tables for set operators examples

SQL> create table gkdept{deptno number{2) primary Kkey,
2 dname varchar{28));

Table created.

SQL> create table gkemp{empno number{3) primary Kkey,
2 ename varchar{28),
3 deptno number{2) references gkdept{(deptno));

Table created.

SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into

1 row created.

gkdept

gkdept

gkdept

gkdept

gkemp

gkemp

gkemp

gkemp

values(11, 'Computer Science');

values(12, 'Commerce");

values{13, 'Management");

values(14,"'Arts*);

values({1061,"Varsha G Kalyan' ,11);

values(1082,"Nisarga’',12);

values(103, "Eenchara’ ,11);

values(1684,'Rama” ,14);



SQL> select 2 from gkdept;

DEPTNO DHNAME
11 Computer Science
12 Commerce
13 Management
14 Arts

SQL> select 2 from gkemp;

EMPNO ENAHME DEPTHO
181 Varsha G Kalyan 11
182 HNHisarga 12
183 Eenchara 11
1684 Rama 14

Set operators combine the result of two quires into single one. The different set
operators are:

* UNION

* UNION ALL

* INTERSECT

* MINUS

Union Clause

UNION is used to combine the result of two or more SELECT statements. However
it will eliminate duplicate rows from its result set. In case of UNION, humber of
columns in all the query must be same and datatype must be same in both the

tables.

Common Records
fromboth Queries

ecords from
First Query

Records from
Second Query



Union Example
'SQL> select deptno from gkdept

2 union
3 select deptno from gkemp;

DEPTHNO

Union ALL Clause

Same as UNION but it shows the duplicate rows

Union All Example
SOQL> select deptno from gkdept
2 union all

3 select deptno from gkemp;

DEPTHNO

Intersect Clause
Intersect is used to combine two SELECT statements, but it only returns the
records which are common from both SELECT statement. In case of intersect the

number of columns in all the query and datatype must be same.

Common Records
in both Queries

ecords from
First Query

Records from
Second Query




Intersect Example

SQL> select deptno from gkdept
2 1intersect

3 select deptno from gkemp;

DEPTHNO

Minus Clause

Minus combines result of two SELECT statement and return only those result which

belongs to the first set of result.

Minus Example

SQL> select
2 minus
3 select

DEPTHNO

SQL> select
2 minus
3 select

Records only
in Query One

deptno

deptno

deptno

deptno

no rows selected

from

from

from

from

gkdept

gkemp ;

gkemp

gkdept;



JOINS

The SQL Joins clause is used to combine records from two or more tables in a
database. A JOIN is a means for combining fields from two tables by using values
common to each.

Here, it is noticeable that the join is performed in the WHERE clause. Several
operators can be used to join tables, such as =, <, >, <>, <=, >=, =, BETWEEN,
LIKE, and NOT; they can all be used to join tables. However, the most common

operator is the equal symbol.

SQL Join Types:
There are different types of joins available in SQL:

INNER
OUTER(LEFT,RIGHT,FULL)
CROSS

Consider the below tables for Join Operations examples

SQL> create table gkproduct{product_id number(3) primary Key,
2 product_name varchar(15),
3 supplier_name varchar{15),
4 price number{5));

Table created.

SQL> create table gkorder{order_id number{4) primary key,
2 product_id number{3) references gkproduct{product_id),
3 total units number({3),
4 customer_name varchar{15));

Table created.



SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into
1 row created.
SQL> insert into

1 row created.

SQL> insert into

1 row created.

gkproduct values(100,'Camera’,'Nikon' ,308000);

gkproduct values{1081,'Television’,'Onida‘’,15608);

gkproduct values({102, 'Refrigerator’,'videocon’,18608);

gkproduct values{(163,'Ipod’, " 'Apple’ ,160080);

gkproduct values(1084,'Mobile’, 'Samsung’ ,8608);

gkorder values{51080,104,308," 'Infosys");

gkorder values{(5161,1082,15,"'GKHU");

gkorder values(5102,103,25, Wipro’);

SQL> insert into gkorder values{5163,161,108,°'TCS");

1 row created.



SQL> select = from gkproduct;

PRODUCT_ID PRODUCT_NAME SUPPLIER_NAME PRICE
188 Camera Nikon 30000
181 Television Onida 15008
182 Refrigerator videocon 18000
1683 Ipod Apple 16000
1684 Mobile Samsung 8008

SQL> select = from gkorder;

ORDER_ID PRODUCT_ID TOTAL_UNITS CUSTOHMER_NAME

5168806 164 38 Infosys

51061 102 15 GKHMU

5182 183 25 Wipro

5163 161 18 TCS
INNER Join

Inner join are also known as Equi Joins. They are the most common joins used in
SQL. They are known as equi joins because it uses the equal sign as the
comparison operator (=). The INNER join returns all rows from both tables where
there is a match.

Consider the above tables (gkproduct and gkorder),

For example: If you want to display the product information for each order the

query will be as given below

SQL> select gko.order id,gkp.product_name,gkp.price, gkp.supplier_name,gko.total units
2 from gkproduct gkp, gkorder gko
3 where gko.product id=gkp.product id;

ORDER_ID PRODUCT_NAME PRICE SUPPLIER_NAME  TOTAL_UNITS
5183 Television 15000 Onida 10
5161 Refrigerator 18008 videocon 15
5162 Ipod 16600 Apple 25

5100 Hobile 8080 Samsung 30



OUTER Join

OUTER join condition returns all rows from both tables which satisfy the join
condition along with rows which do not satisfy the join condition from one of the
tables. The sqgl outer join operator in Oracle is (+) and is used on one side of the
join condition only.

For example: If you want to display all the product data along with order items
data, with null values displayed for order items if a product has no order item, the

sql query for outer join would be as shown below(ie First Query).

SQL> select gkp.product_id, gkp.product_name,gko.order_id,gko.total units
2 from gkproduct gkp, gkorder gko
3 where gko.product_id{+)=gkp.product_id;

PRODUCT_ID PRODUCT_NAME ORDER_ID TOTAL_UNITS
1684 HMobile 51060 30
182 Refrigerator 5101 15
163 Ipod 5102 25
181 Television 5103 10

100 Camera

SQL> select gkp.product_id, gkp.product_name,gko.order_id,gko.total units
2 from gkproduct gkp, gkorder gko
3 where gkp.product_id{+)=gko.product_id;

PRODUCT_ID PRODUCT_NAME ORDER_ID TOTAL_UNITS
181 Television 5183 18
182 Refrigerator 5101 15
163 Ipod 51082 25
184 HMobile 5160 30

NOTE: If the (+) operator is used in the left side of the join condition it is
equivalent to left outer join. If used on the right side of the join condition it is

equivalent to right outer join.



OUTER JOIN :
Outer Join retrieves Either, the matched rows from one table and all rows in the

other table Or, all rows in all tables (it doesn't matter whether or not there is a

match).
There are three kinds of Outer Join :

LEFT OUTER JOIN or LEFT JOIN

This join returns all the rows from the left table in conjunction with the matching
rows from the right table. If there are no columns matching in the right table, it

returns NULL values.

RIGHT OUTER JOIN or RIGHT JOIN

This join returns all the rows from the right table in conjunction with the matching
rows from the left table. If there are no columns matching in the left table, it

returns NULL values.

FULL OUTER JOIN or FULL JOIN

This join combines left outer join and right outer join. It returns row from either

table when the conditions are met and returns null value when there is no match.

In other words, OUTER JOIN is based on the fact that : ONLY the matching entries
in ONE OF the tables (RIGHT or LEFT) or BOTH of the tables(FULL) SHOULD be
listed.



CROSS Join

It is the Cartesian product of the two tables involved. It will return a table with
consists of records which combines each row from the first table with each row of
the second table.

The result of a CROSS JOIN will not make sense in most of the situations.

Moreover, we won't need this at all (or needs the least, to be precise).

SQL> select * from gkproduct
2 CROSS JOIN

3 gkorder;
PRODUCT_ID PRODUCT_NAME SUPPLIER_NAME PRICE ORDER_ID PRODUCT_ID TOTAL_UNITS CUSTOMER_NAME
180 Camera Nikon 300080 5108 104 30 Infosys
181 Television Onida 15060 51688 104 38 Infosys
182 Refrigerator videocon 18060 51688 184 38 Infosys
1683 Ipod Apple 1600808 5108 164 30 Infosys
184 HMobile Samsung 8008 5108 104 30 Infosys
180 Camera Nikon 300080 5101 1682 15 GKMU
181 Television Onida 150080 5101 162 15 GKMU
182 Refrigerator videocon 18060 5101 182 15 GKMU
1683 Ipod Apple 16000 5101 182 15 GKMU
1684 Mobile Samsung 800680 5101 182 15 GKMU
180 Camera Nikon 30000 51082 183 25 Wipro
PRODUCT_ID PRODUCT_NAME SUPPLIER_NAME PRICE ORDER_ID PRODUCT_ID TOTAL_UNITS CUSTOMER_NAME

101 Television Onida 15060 5102 183 25 Wipro
182 Refrigerator videocon 18060 51082 183 25 Wipro
103 Ipod Apple 16000 5182 103 25 Wipro
184 HMobile Samsung 8000 5182 183 25 Wipro
188 Camera Nikon 30000 5183 101 18 TCS

1081 Television Onida 150060 5183 101 18 TCS

182 Refrigerator videocon 18060 51083 101 18 TCS

1683 Ipod Apple 160080 5183 101 18 TCS

104 Mobile Samsung 8000 5183 101 18 TCS

28 rows selected.

INNER JOIN: returns rows when there is a match in both tables.

LEFT JOIN: returns all rows from the left table, even if there are no matches in the
right table.

RIGHT JOIN: returns all rows from the right table, even if there are no matches in
the left table.

FULL JOIN: returns rows when there is a match in one of the tables.

SELF JOIN: is used to join a table to itself as if the table were two tables,
temporarily renaming at least one table in the SQL statement.

CARTESIAN JOIN: returns the Cartesian product of the sets of records from the

two or more joined tables.



