

DATA BASE MANAGEMENT SYSTEMS

Unit – IV

Relational Database Language: Data definition in SQL, Queries in SQL,

Insert, Delete and Update Statements in SQL, Views in SQL,

Specifying General Constraints as Assertions, specifying indexes,

Embedded SQL. PL /SQL: Introduction .

Unit-IV

Relational Database Language

SQL

• SQL stands for Structured Query Language

• SQL lets you access and manipulate databases

• SQL is an ANSI (American National Standards Institute) standard

SQL is a declarative (non-procedural)language. SQL is (usually) not case-sensitive,

but we’ll write SQL keywords in upper case for emphasis.

Some database systems require a semicolon at the end of each SQL statement.

A table is database object that holds user data. Each column of the table will have

specified data type bound to it. Oracle ensures that only data, which is identical to

the datatype of the column, will be stored within the column.

SQL DML and DDL

SQL can be divided into two parts:

The Data Definition Language (DDL) and the Data Manipulation Language (DML).

Data Definition Language (DDL)

It is a set of SQL commands used to create, modify and delete database structure

but not data. It also define indexes (keys), specify links between tables, and

impose constraints between tables. DDL commands are auto COMMIT.

The most important DDL statements in SQL are:

• CREATE TABLE - creates a new table

• ALTER TABLE - modifies a table

 TRUNCATE TABLE- deletes all records from a table

 DROP TABLE - deletes a table

Data Manipulation Language (DML)

It is the area of SQL that allows changing data within the database. The query

and update commands form the DML part of SQL:

• INSERT - inserts new data into a database

• SELECT - extracts data from a database

• UPDATE - updates data in a database

• DELETE - deletes data from a database

Data Control Language (DCL)

It is the component of SQL statement that control access to data and to the

database. Occasionally DCL statements are grouped with DML Statements.

 COMMIT –Save work done.

 SAVEPOINT – Identify a point in a transaction to which you can later rollback.

 ROLLBACK – Restore database to original since the last COMMIT.

 GRANT – gives user’s access privileges to database.

REVOKE – withdraw access privileges given with GRANT command.

Basic Data Types

Data Type Description

CHAR(size)

This data type is used to store character strings values of fixed length.

The size in brackets determines the number of characters the cell can

hold. The maximum number of character(ie the size) this data type can

hold is 255 characters. The data held is right padded with spaces to

whatever length specified.

VARCHAR(size)

/

VARCHAR2(size)

This data type is used to store variable length alphanumeric data. It is

more flexible form of CHAR data type. VARCHAR can hold 1 to 255

characters. VARCHAR is usually a wiser choice than CHAR, due to its

variable length format characteristic. But, keep in mind, that CHAR is

much faster than VARCHAR, sometimes up to 50%.

DATE

This data type is used to represent data and time. The standard format

is DD-MMM-YY. Date Time stores date in the 24-hour format. By

default, the time in a date field is 12:00:00am.

NUMBER(P,S)

The NUMBER data type is used to store numbers(fixed or floating

point). Number of virtually any magnitude maybe stored up to 38

digits of precision.

The Precision(P), determines the maximum length of the data, whereas

the scale(S), determine the number of places to the right of the

decimal.

Example: Number(5,2) is a number that has 3 digits before the

decimal and 2 digits after the decimal.

LONG

This data type is used to store variable length character strings

containing up to 2GB. LONG data can be used to store arrays of binary

data in ASCII format. Only one LONG value can be defined per table.

RAW /
LONG RAW

The RAW / LONG RAW data types are used to store binary data, such

as digitized picture or image. RAW data type can have maximum

length of 255 bytes. LONG RAW data type can contain up to 2GB.

The CREATE TABLE Command:

The CREATE TABLE command defines each column of the table uniquely. Each

column has a minimum of three attributes, name, datatype and size(i.e column

width).each table column definition is a single clause in the create table syntax.

Each table column definition is separated from the other by a comma. Finally, the

SQL statement is terminated with a semi colon.

Rules for Creating Tables

 A name can have maximum upto 30 characters.

 Alphabets from A-Z, a-z and numbers from 0-9 are allowed.

 A name should begin with an alphabet.

 The use of the special character like _(underscore) is allowed.

 SQL reserved words not allowed. For example: create, select, alter.

Syntax:

CREATE TABLE <tablename>

(<columnName1> <Datatype>(<size>),

<columnName2> <Datatype>(<size>), …….);

Example:

CREATE TABLE gktab

(Regno NUMBER(3),

Name VARCHAR(20),

Gender CHAR,

Dob DATE,

Course CHAR(5));

Inserting Data into Tables

Once a table is created, the most natural thing to do is load this table with data to

be manipulated later.

When inserting a single row of data into the table, the insert operation:

 Creates a new row(empty) in the database table.

 Loads the values passed(by the SQL insert) into the columns specified.

Syntax:

INSERT INTO <tablename>(<columnname1>, <columnname2>, ..)

Values(<expression1>,<expression2>…);

Example:

INSERT INTO gktab(regno,name,gender,dob,course)

VALUES(101,’Varsh G Kalyan’,’F’,’20-Sep-1985’,’BCA’);

Or you can use the below method to insert the data into table.

INSERT INTO gktab VALUES(102,’Mohith G Kalyan’,’M’,’20-Aug-1980’,’BBM’);

INSERT INTO gktab VALUES(106,’Nisarga’,’F’,’15-Jul-1983’,’BCom’);

INSERT INTO gktab VALUES(105,’Eenchara’,’F’,’04-Dec-1985’,’BCA’);

INSERT INTO gktab VALUES(103,’Ravi K’,’M’,’29-Mar-1989’,’BCom’);

INSERT INTO gktab VALUES(104,’Roopa’,’F’,’17-Jan-1984’,’BBM’);

Whenever you work on the data which has data types like

CHAR,VARCHAR/VARCHAR2, DATE should be used between single quote(‘)

Viewing Data in the Tables

Once data has been inserted into a table, the next most logical operation would be

to view what has been inserted. The SELECT SQL verb is used to achieve this. The

SELECT command is used to retrieve rows selected from one or more tables.

All Rows and All Columns

SELECT * FROM <tablename>

SELECT * FROM gktab;

It shows all rows and column data in the table

Filtering Table Data

While viewing data from a table it is rare that all the data from the table will be

required each time. Hence, SQL provides a method of filtering table data that is

not required.

The ways of filtering table data are:

 Selected columns and all rows

 Selected rows and all columns

 Selected columns and selected rows

Selected Columns and All Rows

The retrieval of specific columns from a table can be done as shown below.

Syntax

SELECT <columnname1>, <Columnname2> FROM <tablename>

Example

Show only Regno, Name and Course from gktab.

SELECT Regno, Name, Course FROM gktab;

Selected Rows and All Columns

The WHERE clause is used to extract only those records that fulfill a specified

criterion.

When a WHERE clause is added to the SQL query, the Oracle engine compares

each record in the table with condition specified in the WHERE clause. The Oracle

engine displays only those records that satisfy the specified condition.

Syntax

SELECT * FROM <tablename> WHERE <condition>;

Here, <condition> is always quantified as <columnname=value>

When specifying a condition in the WHERE clause all standard operators such as

logical, arithmetic and so on, can be used.

Example-1:

Example-2:

Display all the students from BCA.

SELECT * FROM gktab WHERE Course=’BCA’;

Display the student whose regno is 102.

SELECT * FROM gktab WHERE Regno=102;

Selected Columns and Selected Rows

To view a specific set of rows and columns from a table

When a WHERE clause is added to the SQL query, the Oracle engine compares

each record in the table with condition specified in the WHERE clause. The Oracle

engine displays only those records that satisfy the specified condition.

Syntax

SELECT <columnname1>, <Columnname2> FROM <tablename>

WHERE <condition>;

Example-1:

List the student’s Regno, Name for the Course BCA.

SELECT Regno, Name FROM gktab WHERE Course=’BCA’;

Example-2:

List the student’s Regno, Name, Gender for the Course BBM.

SELECT Regno, Name, Gender FROM gktab WHERE Course=’BBM’;

Eliminating Duplicate Rows when using a SELECT statement

A table could hold duplicate rows. In such a case, to view only unique rows the

DISTINCT clause can be used.

The DISTINCT clause allows removing duplicates from the result set. The

DISTINCT clause can only be used with SELECT statements.

The DISTINCT clause scans through the values of the column/s specified and

displays only unique values from amongst them.

Syntax

SELECT DISTINCT <columnname1>, <Columnname2>

FROM <Tablename>;

Example:

Show different courses from gktab

SELECT DISTINCT Course from gktab;

Sorting Data in a Table

Oracle allows data from a table to be viewed in a sorted order. The rows retrieved

from the table will be sorted in either ascending or descending order depending

on the condition specified in the SELECT sentence.

Syntax

SELECT * FROM <tablename>

ORDER BY <Columnname1>,<Columnname2> <[Sort Order]>;

The ORDER BY clause sorts the result set based on the column specified. The

ORDER BY clause can only be used in SELECT statements.

The Oracle engine sorts in ascending order by default

Example-1:

Show details of students according to Regno.

SELECT * FROM gktab ORDER BY Regno;

Example-2:

Show the details of students names in descending order.

SELECT * FROM gktab ORDER BY Name DESC;

DELETE Operations

The DELETE command deletes rows from the table that satisfies the condition

provided by its WHERE clause, and returns the number of records deleted.

The verb DELETE in SQL is used to remove either

 Specific row(s) from a table

OR

 All the rows from a table

Removal of Specific Row(s)

Syntax:

DELETE FROM tablename WHERE Condition;

Example:

DELETE FROM gktab WHERE Regno=103;

1 rows deleted

SELECT * FROM gktab;

In the above table, the Regno 103 is deleted from the table

Remove of ALL Rows

Syntax

DELETE FROM tablename;

Example

DELETE FROM gktab;

6 rows deleted

SELECT * FROM gktab;

no rows selected

Once the table is deleted, use Rollback to undo the above operations.

UPDATING THE CONTENTS OF A TABLE

The UPDATE Command is used to change or modify data values in a table.

The verb update in SQL is used to either updates:

 ALL the rows from a table.

OR

 A select set of rows from a table.

Updating all rows

The UPDATE statement updates columns in the existing table’s rows with a new

values. The SET clause indicates which column data should be modified and the

new values that they should hold. The WHERE clause, if given, specifies which

rows should be updated. Otherwise, all table rows are updated.

Syntax:

UPDATE tablename

SET columnname1=expression1, columnname2=expression2;

Example: update the gktab table by changing its course to BCA.

UPDATE gktab SET course=’BCA’;

6 rows updated

SELECT * FROM gktab;

In the above table, the course is changed to BCA for all the rows in the table.

Updating Records Conditionally

If you want to update a specific set of rows in table, then WHERE clause is used.

Syntax:

UPDATE tablename

SET Columnname1=Expression1, Columnname2=Expression2

WHERE Condition;

Example:

Update gktab table by changing the course BCA to BBM for Regno 102.

UPDATE gktab SET Course=’BBM’ WHERE Regno=102;

1 rows updated

SELECT * FROM gktab;

MODIFYING THE STRUCTURE OF TABLES

The structure of a table can be modified by using the ALTER TABLE command.

ALTER TABLE allows changing the structure of an existing table. With ALTER

TABLE if is possible to add or delete columns, create or destroy indexes,

change the data type of existing columns, or rename columns or the table

itself.

ALTER TABLE works by making a temporary copy of the original table. The

alteration is performed on the copy, then the original table is deleted and the new

one is renamed. While ALTER TABLE is executing, the original table is still

readable by the users of ORACLE.

Restrictions on the ALTER TABLE

The following task cannot be performed when using the ALTER TABLE Clause:

 Change the name of the table.

 Change the name of the Column.

 Decrease the size of a column if table data exists.

ALTER TABLE Command can perform

 Adding New Columns.

 Dropping A Column from a Table.

 Modifying Existing Columns.

Adding New Columns

Syntax:

ALTER TABLE tablename

ADD(NewColumnname1 Datatype(size),

NewColumnname2 Datatype(size)…..);

Example: Enter a new filed Phno to gktab.

ALTER TABLE gktab ADD(Phno number(10));

The table is altered with new column Phno

Select * from gktab;

You can also use DESC gktab, to see the new column added to table.

Dropping A Column from a Table.

Syntax:

ALTER TABLE tablename DROP COLUMN Columnname;

Example: Drop the column Phno from gktab.

ALTER TABLE gktab DROP COLUMN Phno;

The table is altered, the column Phno is removed from the table.

Select * from gktab;

You can also use DESC gktab, to see the column removed from the table.

Modifying Existing Columns.

Syntax:

ALTER TABLE tablename

MODIFY(Columnname Newdatatype(Newsize));

Example:

ALTER TABLE gktab MODIFY(Name VARCHAR(25));

The table altered with new size value 25.

DESC gktab;

RENAMING TABLES

Oracle allows renaming of tables. The rename operation is done atomically, which

means that no other thread can access any of the tables while the rename process

is running.

Syntax

RENAME tablename TO newtablename;

TRUNCATING TABLES

TRUNCATE command deletes the rows in the table permanently.

Syntax:

TRUNCATE TABLE tablename;

The number of deleted rows are not returned. Truncate operations drop and re-

create the table, which is much faster than deleting rows one by one.

Example:

TRUNCATE TABLE gktab;

Table truncated i.e., all the rows are deleted permanently.

DESTROYING TABLES

Sometimes tables within a particular database become obsolete and need to be

discarded. In such situation using the DROP TABLE statement with table name

can destroy a specific table.

Syntax:

DROP TABLE tablename;

Example:

DROP TABLE gktab;

If a table is dropped all the records held within and the structure of the table is

lost and cannot be recovered.

COMMIT and ROLLBACK

Commit

Commit command is used to permanently save any transaction into database.

SQL> commit;

Rollback

Rollback is used to undo the changes made by any command but only before a

commit is done. We can't Rollback data which has been committed in the database

with the help of the commit keyword or DDL Commands, because DDL commands

are auto commit commands.

SQL> Rollback;

Difference between DELETE and DROP.

The DELETE command is used to remove rows from a table. After performing a

DELETE operation you need to COMMIT or ROLLBACK the transaction to make the

change permanent or to undo it.

The DROP command removes a table from the database. All the tables' rows,

indexes and privileges will also be removed. The operation cannot be rolled back.

Difference between DELETE and TRUNCATE.

The DELETE command is used to remove rows from a table. After performing a

DELETE operation you need to COMMIT or ROLLBACK the transaction to make the

change permanent or to undo it.

TRUNCATE removes all rows from a table. The operation cannot be rolled back.

Difference between CHAR and VARCHAR.

CHAR

1. Used to store fixed length data.

2. The maximum characters the data type can hold is 255 characters.

3. It's 50% faster than VARCHAR.

4. Uses static memory allocation.

VARCHAR

1. Used to store variable length data.

2. The maximum characters the data type can hold is up to 4000 characters.
3. It's slower than CHAR.

4. Uses dynamic memory allocation.

DATA CONSTRINTS

Oracle permits data constraints to be attached to table column via SQL syntax that

checks data for integrity prior storage. Once data constraints are part of a table

column construct, the oracle database engine checks the data being entered into a

table column against the data constraints. If the data passes this check, it is

stored in the table column, else the data is rejected. Even if a single column of the

record being entered into the table fails a constraint, the entire record is rejected

and not stored in the table.

Both CREATE TABLE and ALTER TABLE SQL verbs can be used to write SQL

sentences that attach constraints to a table column.

The constraints are a keyword. The constraint is rules that restrict the values for

one or more columns in a table. The Oracle Server uses constraints to prevent

invalid data entry into tables. The constraints store the validate data and without

constraints we can just store invalid data. The constraints are an important part of

the table.

Primary Key Constraint

A primary key can consist of one or more columns on a table. Primary key

constraints define a column or series of columns that uniquely identify a given row

in a table. Defining a primary key on a table is optional and you can only define a

single primary key on a table. A primary key constraint can consist of one or many

columns (up to 32). When multiple columns are used as a primary key, they are

called a composite key. Any column that is defined as a primary key column is

automatically set with a NOT NULL status. The Primary key constraint can be

applied at column level and table level.

Foreign Key Constraint

A foreign key constraint is used to enforce a relationship between two tables. A

foreign key is a column (or a group of columns) whose values are derived from the

Primary key or unique key of some other table.

The table in which the foreign key is defined is called a Foreign table or Detail

table. The table that defines primary key or unique key and is referenced by the

foreign key is called Primary table or Master table.

The master table can be referenced in the foreign key definition by using the

clause REFERENCES Tablename.ColumnName when defining the foreign key,

column attributes, in the detail table. The foreign key constraint can be applied at

column level and table level.

Unique Key Constraint

Unique key will not allow duplicate values. A table can have more than one Unique

key. A unique constraint defines a column, or series of columns, that must be

unique in value. The UNIQUE constraint can be applied at column level and table

level.

CHECK Constraint

Business Rule validation can be applied to a table column by using CHECk

constraint. CHECK constraints must be specified as a logical expression that

evaluates either to TRUE or FALSE.

The CHECK constraint ensures that all values in a column satisfy certain

conditions. Once defined, the database will only insert a new row or update an

existing row if the new value satisfies the CHECK constraint. The CHECK

constraint is used to ensure data quality.

A CHECK constraint takes substantially longer to execute as compared to NOT

NULL, PRIMARY KEY, FOREIGN KEY or UNIQUE. The CHECK constraint can be

applied at column level and table level.

NOT NULL Constraint

The NOT NULL column constraint ensures that a table column cannot be left

empty.

When a column is defined as not null, then that column becomes a mandatory

column. The NOT NULL constraint can only be applied at column level.

Example on Constraints

Consider the Table shown below

Arithmetic Operators

Oracle allows arithmetic operators to be used while viewing records from a table or

while performing data manipulation operations such as insert, updated and delete.

These are:

+ Addition

- Subtraction

/ Division

* Multiplication

() Enclosed Operations

Consider the below employee table(gkemp)

Special Note

The DUAL table is a special one-row, one-column table present by default in

Oracle and other database installations. Dual is a dummy table.

Logical Operators

Logical operators that can be used in SQL sentence are:

AND Operators

OR Operators

NOT Operators

Operators Description
OR :-For the row to be selected at least one of the conditions must be true.

AND :-For a row to be selected all the specified conditions must be true.

NOT :-For a row to be selected the specified condition must be false.

Consider the below employee table(gkemp)

For example: if you want to find the names of employees who are working either

in Commerce or Arts department, the query would be like,

For example: To find the names of the employee whose salary between10000 to

20000, the query would be like,

For example: If you want to find out the names of the employee who do not
belong to computer science department, the query would be like,

Range Searching (BETWEEN)

In order to select the data that is within a range of values, the BETWEEN operator

is used. The BETWEEN operator allows the selection of rows that contain values

within a specified lower and upper limit. The range coded after the word BETWEEN

is inclusive.

The lower value must be coded first. The two values in between the range must be

linked with the keyword AND. The BETWEEN operator can be used with both

character and numeric data types. However, the data types cannot be mixed.

For example: Find the names of the employee whose salary between10000 and

20000, the query would be like,

Pattern Matching (LIKE, IN, NOT IN)

LIKE

The LIKE predicate allows comparison of one string value with another string

value, which is not identical. this is achieved by using wild characters. Two wild

characters that are available are:

For character data types:

% allows to match any string of any length (including zero length).

_ allows to match on a single character.

IN

The IN operator is used when you want to compare a column with more than one

value. It is similar to an OR condition.

For example: If you want to find the names of company located in the city

Bangalore, Mumbai, Gurgaon, the query would be like,

NOT IN

The NOT IN operator is opposite to IN.

For example: If you want to find the names of company located in the other city

of Bangalore, Mumbai, Gurgaon, the query would be like,

Column Aliases(Renaming Columns) in Oracle:

Sometimes you want to change the column headers in the report. For this you can

use column aliases in oracle. Oracle has provided excellent object oriented

techniques as its robust database. It always good to practice and implement

column aliases since it will make your code readable while using this columns.

to add column aliases to your sql queries.

 Give a column alias name separated by space after the column name.

Select DOB DateofBirth from gkstudent

In the above query, the word in bold is column aliases.

ORACLE FUNCTIONS

Oracle functions serve the purpose of manipulating data items and returning a

result. Functions are also capable of accepting user-supplied variables or constants

and operating on them. Such variables or constants are called arguments. Any

number of arguments(or no arguments at all) can be passed to a function in the

following format.

Function_Name(arguments1,arguments2…..)

Oracle functions can be clubbed together depending upon whether they operate on

a single row or a group of rows retrieved from a table. Accordingly, functions can

be classified as follows:

Group Functions(Aggregate Functions)

Function that act on a set of values are called group functions.

Scalar Functions(Single Row Functions)

Function that act on only one value at a time are called scalar functions.

String Functions: for string data type

Numeric functions: for Number data type

Conversion function: for conversion of one data type to another.

Date conversions: for date data type.

a) SQL Aggregate / Group Functions

Group functions return results based on groups of rows, rather than on single

rows. returns the number of rows in the query.SQL aggregate functions return a

single value, calculated from values in a column.

Useful aggregate functions:

a) COUNT() - Returns the number of rows

b) AVG() - Returns the average value

c) MAX() - Returns the largest value

d) MIN() - Returns the smallest value

e) SUM() - Returns the total sum

Consider the below employee table(gkemp)

a) COUNT()

The COUNT() function counts number of values present in the column

excluding Null values.

b) AVG()

The AVG() function returns the average value of a column specified.

c) MAX()

The MAX() function returns the highest value of a particular column.

d) MIN()

The MIN() function returns the smallest value of a particular column.

e) SUM()

The SUM() function returns the sum of column values.

b) SQL String Functions

SQL string functions are used primarily for string manipulation. The following table

details the important string functions:

SQL Command Meaning

|| It used for concatenation.

INITCAP Return a string with first letter of each word in upper case.

LENGTH Return the length of a word.

LOWER Returns character, with all letters forced to lowercase.

UPPER Returns character, with all letters forced to uppercase.

LPAD Returns character, left-padded to length n with sequence of
character specified.

RPAD Returns character, right-padded to length n with sequence of
character specified.

LTRIM Removes characters from the left of char with initial characters
removed upto the first character not in set.

RTRIM Returns characters, with final characters removed after the last
character not in the set.

SUBSTR Returns a portion of characters, beginning at character m, and

going upto character n. if n is omitted, it returns upto the last

character in the string. The first position of char is 1.

INSTR Returns the location of substring in a string.

Date Conversion Functions

SQL Command Meaning

SYSDATE It shows the system date.

ADD_MONTHS(d, n) Returns date after adding the number of months
specified in the function.

LAST_DAY(d) Returns the date of the month specified with the
function.

MONTHS_BETWEEN(d1,d2) Returns number of months between d1 and d2.

NEXT-DAY(date, char) Returns the date of the first weekday named by char
that is after the date named by date. char must be a
day of the week

ROUND(date, [format]) Returns a date rounded to a specific unit of measure.
If the second parameter is omitted, the ROUND
function will round the date to the nearest day.

Conversion Functions

TO_DATE(<char

value>[,<format>])

Converts a character field to a date field

TO-CHAR(<date

value>[,<format>])

Converts a date field to a character field

SET OPERATORS and JOINS

Set Operators

Consider the below tables for set operators examples

Set operators combine the result of two quires into single one. The different set

operators are:

 UNION

 UNION ALL

 INTERSECT

 MINUS

Union Clause

UNION is used to combine the result of two or more SELECT statements. However

it will eliminate duplicate rows from its result set. In case of UNION, number of

columns in all the query must be same and datatype must be same in both the

tables.

Union Example

Union ALL Clause

Same as UNION but it shows the duplicate rows

Union All Example

Intersect Clause

Intersect is used to combine two SELECT statements, but it only returns the

records which are common from both SELECT statement. In case of intersect the

number of columns in all the query and datatype must be same.

Intersect Example

Minus Clause

Minus combines result of two SELECT statement and return only those result which

belongs to the first set of result.

Minus Example

JOINS

The SQL Joins clause is used to combine records from two or more tables in a

database. A JOIN is a means for combining fields from two tables by using values

common to each.

Here, it is noticeable that the join is performed in the WHERE clause. Several

operators can be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN,

LIKE, and NOT; they can all be used to join tables. However, the most common

operator is the equal symbol.

SQL Join Types:

There are different types of joins available in SQL:

 INNER

 OUTER(LEFT,RIGHT,FULL)

 CROSS

Consider the below tables for Join Operations examples

INNER Join

Inner join are also known as Equi Joins. They are the most common joins used in

SQL. They are known as equi joins because it uses the equal sign as the

comparison operator (=). The INNER join returns all rows from both tables where

there is a match.

Consider the above tables (gkproduct and gkorder),

For example: If you want to display the product information for each order the

query will be as given below

OUTER Join

OUTER join condition returns all rows from both tables which satisfy the join

condition along with rows which do not satisfy the join condition from one of the

tables. The sql outer join operator in Oracle is (+) and is used on one side of the

join condition only.

For example: If you want to display all the product data along with order items

data, with null values displayed for order items if a product has no order item, the

sql query for outer join would be as shown below(ie First Query).

NOTE: If the (+) operator is used in the left side of the join condition it is

equivalent to left outer join. If used on the right side of the join condition it is

equivalent to right outer join.

OUTER JOIN :

Outer Join retrieves Either, the matched rows from one table and all rows in the

other table Or, all rows in all tables (it doesn't matter whether or not there is a

match).

There are three kinds of Outer Join :

 LEFT OUTER JOIN or LEFT JOIN

This join returns all the rows from the left table in conjunction with the matching

rows from the right table. If there are no columns matching in the right table, it

returns NULL values.

 RIGHT OUTER JOIN or RIGHT JOIN

This join returns all the rows from the right table in conjunction with the matching

rows from the left table. If there are no columns matching in the left table, it

returns NULL values.

 FULL OUTER JOIN or FULL JOIN

This join combines left outer join and right outer join. It returns row from either

table when the conditions are met and returns null value when there is no match.

In other words, OUTER JOIN is based on the fact that : ONLY the matching entries

in ONE OF the tables (RIGHT or LEFT) or BOTH of the tables(FULL) SHOULD be
listed.

CROSS Join

It is the Cartesian product of the two tables involved. It will return a table with

consists of records which combines each row from the first table with each row of

the second table.

The result of a CROSS JOIN will not make sense in most of the situations.

Moreover, we won’t need this at all (or needs the least, to be precise).

INNER JOIN: returns rows when there is a match in both tables.

LEFT JOIN: returns all rows from the left table, even if there are no matches in the

right table.

RIGHT JOIN: returns all rows from the right table, even if there are no matches in

the left table.

FULL JOIN: returns rows when there is a match in one of the tables.

SELF JOIN: is used to join a table to itself as if the table were two tables,

temporarily renaming at least one table in the SQL statement.

CARTESIAN JOIN: returns the Cartesian product of the sets of records from the

two or more joined tables.

