
BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 1 of 23

BCA204T: DATA BASE MANAGEMENT SYSTEMS

Unit - III

Functional Dependencies and Normalization for Relational Database:

Informal Design Guidelines for Relational schemas, Functional

Dependencies, Normal Forms Based on Primary Keys., General

Definitions of Second and Third Normal Forms Based on Primary

Keys., General Definitions of Second and Third Normal Forms, Boyce-

Codd Normal Form. Relational Data Model and Relational Algebra:

Relational Model Concepts., relational Model Constraints and

relational Database Schema, defining Relations, Update Operations on

Relations., Basic Relational Algebra Operations, Additional Relational

Operations., Examples of queries in the Relational Algebra., Relational

Database design Using ER-to-Relational Mapping.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 2 of 23

Unit-III

Functional Dependencies and

Normalization for Relational

Database

Functional Dependency

Functional dependency (FD) is set of constraints between two

attributes in a relation. Functional dependency says that if two tuples

have same values for attributes A1, A2,..., An then those two tuples

must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by arrow sign (→), that is

X→Y, where X functionally determines Y. The left hand side attributes

determines the values of attributes at right hand side.

Armstrong’s Axioms

William W. Armstrong established a set of rules which can be used to

Inference the functional dependencies in a relational database:

Reflexivity rule: A B is true, if B is subset of A.

Augmentation rule: If A B is true, then ACBC is also true.

Transitivity rule: If A B and B C, then A C is implied.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 3 of 23

Codd's 12 Rules

Dr Edgar F. Codd was a computer Scientist who invented Relational

model for Database management. Based on relational model relational

database was created. Codd came up with twelve rules of his own

which according to him, a database must obey in order to be a true

relational database.

Codd's rule actually define what quality a DBMS requires in order

to become a

Relational Database Management System(RDBMS). Till now, there

is hardly

any commercial product that follows all the 13 Codd's rules. Even

Oracle follows only eight and half (8.5) out of 12. The Codd's 12 rules

are as follows

Rule 1: Information rule

All information is to be represented as stored data in cells of

tables. Everything in a database must be stored in table formats.

This information can be user data or meta-data.

Rule 2: Guaranteed Access rule

Each unique piece of data(atomic value) should be accessible by :

Table Name + primary key(Row) + Attribute(column).

No other means, such as pointers, can be used to access data.

Rule 3: Systematic Treatment of NULL values

NULL may have several meanings, it can mean data is missing, data

is not applicable, or no value. It should be handled consistently.

Rule 4: Active online catalog

The structure description of whole database must be stored in an

online catalog, i.e. data dictionary, which can be accessed by the

authorized users. Users can use the same query language to access

the catalog which they use to access the database itself.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 4 of 23

Rule 5: Comprehensive data sub-language rule

A database must have a support for a language which has linear

syntax which is capable of data definition, data manipulation and

transaction management operations. Database can be accessed by

means of this language only, either directly or by means of some

application.

Rule 6: View updating rule

All view that are theoretically updatable should be updatable by the

system.

Rule 7: High-level insert, update and delete rule

There must be Insert, Delete, Update operations at each level of

relations. This must not be limited to a single row, it must also support

union, intersection and minus operations to yield sets of data records.

Rule 8: Physical data independence

The application should not have any concern about how the data is

physically stored. Also, any change in its physical structure must

not have any impact on application.

Rule 9: Logical data independence

If there is change in the logical structure (table structures) of the

database the user view of data should not change.

Say, if a table is split into two tables, a new view should give result

as the join of the two tables. This rule is most difficult to satisfy.

Rule 10: Integrity independence

Integrity constraints must be defined and separated from the

application programs. Changing Constraints must be allowed

without affecting the applications.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 5 of 23

Rule 11: Distribution independence

A database should work properly regardless of its distribution across a

network, whether they are distributed or not. This lays foundation of

distributed database.

Rule 12: Non-subversion rule

If low-level access is allowed to a system it should not be able to

subvert or bypass the integrity rules to change data.

Normalization

Normalization is the process of organizing the attributes and tables

of a relational database to minimize data redundancy.

or

Normalization is the process of reorganizing data in a database so

that it meets two basic requirements:

a) There is no redundancy of data (all data is stored in only

one place).

b) Data dependencies are logical (all related data items are stored

together).

Normalization involves refactoring a table into smaller (and less

redundant) tables but without losing information; defining foreign keys

in the old table referencing the primary keys of the new ones. The

objective is to isolate data so that additions, deletions, and

modifications of an attribute can be made in just one table and then

propagated through the rest of the database using the defined foreign

keys.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 6 of 23

Needs for Normalization

Improves database design.

Ensure minimum redundancy of data.

It can save storage space and ensure the consistency of your

data.

More flexible database structure.

Removes anomalies for database activities.

FIRST NORMAL FORM (1NF)

First normal form: A table is in the first normal form if it contains

no repeating columns.

Consider the below table, in this example it shows several

employees working on several projects. In this company the same

employee can work on different projects and at a different hourly

rate. Convert this table into 1NF.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 7 of 23

STEPS:

Transform a table of unnormalised data into first normal form (1NF).

The process is as follows:

Identify repeating attributes.

Remove these repeating attributes to a new table together

with a copy of the key from the UNF table. After removing the

duplicate data the repeating attributes are easily identified.

In the previous table the Employee No, Employee Name,

Department No, Department Name and Hourly Rate attributes

are repeating. These are the repeating attributes and have been

to a new table together with a copy of the original key

(ie:Project Code).

A key of Project Code and Employee No has been defined for this

new table. This combination is unique for each row in the table.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 8 of 23

SECOND NORMAL FORM (2NF)

Second normal form: A table is in the second normal form if it is in

the first normal form and contains only columns that are dependent

on the whole (primary) key.

STEPS:

Transform 1NF data into second normal form (2NF). Remove any -key

attributes (partial Dependencies) that only depend on part of the table

key to a new table. Ignore tables with a simple key or with no non-

key attributes.

The first table went straight to 2NF as it has a simple

key (Project Code).

Employee name, Department No and Department Name are

dependent upon Employee No only. Therefore, they were

moved to a new table with Employee No being the key.

However, Hourly Rate is dependent upon both Project Code and

Employee No as an employee may have a different hourly rate

depending upon which project they are working on. Therefore it

remained in the original table.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 9 of 23

THIRD NORMAL FORM (3NF)

Third normal form: A table is in the third normal form if it is in the

second normal form and all the non-key columns are dependent only

on the primary key. If the value of a non-key column is dependent on

the value of another non-key column we have a situation known as

transitive dependency. This can be resolved by removing the columns

dependent on non-key items to another table.

STEPS:

Data in second normal form (2NF) into third normal form (3NF).

Remove to a new table any non-key attributes that are more

dependent on other non-key attributes than the table key.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 10 of 23

The project team table went straight from 2NF to 3NF as it

only has one non-key attribute.

Department Name is more dependent upon Department No than

Employee No and therefore was moved to a new table.

Department No is the key in this new table and a foreign key in

the Employee table.

Boyce-Codd Normal Form(BCNF)

A table is in Boyce-Codd normal form (BCNF) if and only if it is in

3NF and every determinant is a candidate key.

Anomalies can occur in relations in 3NF if there is a composite key

in which part of that key has a determinant which is not itself a

candidate key.

This can be expressed as R(A,B,C), C--->A where:

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 11 of 23

o The relation R contains attributes A, B and

C. o A and B form a candidate key.

o C is the determinant for A (A is functionally dependent on

C).

o C is not part of any key.

Anomalies can also occur where a relation contains several

candidate keys where:

o The keys contain more than one attribute (they are

composite keys).

o An attribute is common to more than one key.

Example to understand BCNF:-

Consider the following non-BCNF table:

The candidate key of the table are:

{Person, Shop Type}

{Person, Nearest Shop}

The table does not adhere to BCNF because of the dependency

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 12 of 23

Nearest Shop Shop Type, in which the determining

attribute (Nearest shop) is neither a candidate key nor a

superset of a candidate key.

After Normalization.

Candidate keys are {Person, Shop} and {Shop}, respectively.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 13 of 23

Relational Data Model and

Relational Algebra

Relational Model Concepts

The relational Model of Data is based on the concept of a Relation.

A Relation is a mathematical concept based on the ideas of sets. The

strength of the relational approach to data management comes from

the formal foundation provided by the theory of relations. The model

was first proposed by Dr. E.F. Codd of IBM in 1970 in the following

paper: "A Relational Model for Large Shared Data Banks,"

Communications of the ACM, June 1970.

Relation:

It is a table which has rows and columns in the data model, where

rows represent records and columns represents the attributes.

Tuples:

A single row of a table, which contains a single record for that

relation, is called a tuple.

Attributes:

Columns in a table are called attributes of the relation.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 14 of 23

Cardinality of a relation: The number of tuples in a relation
determines its cardinality. In this case, the relation has a cardinality of
4.

Degree of a relation: Each column in the tuple is called an attribute.
The number of attributes in a relation determines its degree. The

relation has a degree of 5.

Domain:

A domain definition specifies the kind of data represented by the

attribute.

More- particularly, a domain is the set of all possible values that an

attribute may validly contain. Domains are often confused with data

types, but this is wrong. Data type is a physical concept while

domain is a logical one. "Number" is a data type and "Age" is a

domain. To give another example "StreetName" and "Surname"

might both be represented as text fields, but they are obviously

different kinds of text fields; they belong to different domains.

Properties of a Relation

A relation with N columns and M rows (tuples) is said to be of degree

N and cardinality M. This is Student_Table which shows the relation of

degree three and cardinality five.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 15 of 23

The characteristic properties of a relation are as follows:

All entries in a given column are of the same kind or

type.

Attributes are unordered - The order of columns in a

relation is immaterial. The display of a relation in tabular

form is free to arrange columns in any order.

No duplicate tuples. A relation cannot contain two or

more tuples which have the same values for all the

attributes. i.e., In any relation, every row is unique. There

is only one value for each attribute of a tuple. The

tuple should have only one value. The table shown below is

not allowed in the relational model, despite the clear

intended representation, ie. the Student has two values for

Place, (eg. Nisarga has one in Pune, and one in Chennai). In

such situations,the multiple values must be split into

multiple tuples to be a valid relation.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 16 of 23

Tuples are unordered. The order of rows in a relation is
immaterial. One is free to display a relation in any
convenient way.

Integrity Constraints over Relations

An integrity constraint (IC) is a condition that is specified on a

database schema, and restricts the data that can be stored in an

instance of the database. If a database instance satisfies all the

integrity constraints specified on the database schema, it is a legal

instance. A DBMS enforces integrity constraints, in that it permits only

legal instances to be stored in the database.
Integrity constraints are specified and enforced at different times:

1. When the DBA or end user defines a database schema, he

or she specifies the ICs that must hold on any instance of

this database.

2. When a database application is run, the DBMS checks for

violations and disallows changes to the data that violate

the specified ICs.

Keys of a Relation

It is a set of one or more columns whose combined values are unique

among all occurrences in a given table. A key is the relational means

of specifying uniqueness. Some different types of keys are:

Primary key is an attribute or a set of attributes of a relation which

posses the properties of uniqueness and irreducibility (No subset

should be unique). For example: Register Number in Student table is

primary key, Passenger Number in passenger table is primary key,

Passport number in Booking table is a primary key and the

combination of passenger number and Passport Number in

Reservation table is a primary key ie composite primary key.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 17 of 23

Foreign key is the attributes of a table, which refers to the primary

key of some another table. Foreign key permit only those values,

which appears in the primary key of the table to which it refers or may

be null (Unknown value).

For example: Register number of Result table refers to the Register

number of Student table, which is the primary key of Student table, so

we can say that Register number of Result table is the foreign key.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 18 of 23

Relational Algebra

 Basic operations:

 Projection (π) Selects a subset of columns from relation.

 Selection (σ) Selects a subset of rows from relation.

 Cross-product (×) Allows us to combine two relations.

 Set-difference (-) Tuples in reln. 1, but not in reln. 2.

 Union (U) Tuples in reln. 1 and in reln. 2.

 Rename(ρ) Use new name for the Tables or fields.

 Additional operations:

 Intersection (∩), join().

PROJECT (π)

The PROJECT operation is used to select a subset of the attributes of

a relation by specifying the names of the required attributes

Consider the Student_table:

A) For example, to get a name from Student_Table.

πName(Student_Table)

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 19 of 23

B) For example, to get a regno and name from Student_Table.

πRegno,Name(Student_Table)

SELECT(σ)

The SELECT operation is used to choose a subset of the tuples from

a relation that satisfies a selection condition. the SELECT operation

can be consider to be a filter that keeps only those tuples that satisfy

a qualifying condition.

A) For example, to list the regno > 102 from Student_Table.

σRegno>102(Student_table)

B) For example, to list all the Students belong to BCA course.

σCourse=”BCA”(Student_table)

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 20 of 23

Union, Intersection, Set-Difference

 All of these operations take two input relations, which must be

union-compatible:

 Same number of fields.

 `Corresponding’ fields have the same type.

Consider:

UNION Operator

List of customers who are either borrower or depositor at bank

πCust-name (Borrower) U πCust-name (Depositor)

INTERSECTION Operator

Customers who are both borrowers and depositors

πCust-name (Borrower) ∩ πCust-name (Depositor)

Set Difference

Customers who are borrowers but not depositors

πCust-name (Borrower) - πCust-name (Depositor)

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 21 of 23

Cartesian-Product or Cross-Product (S1 × R1)

 Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1, with field

names `inherited’ if possible.

 Consider the borrower and loan tables as follows:

JOIN

Join is combination of Cartesian product followed by selection

process. Join operation pairs two tuples from different relations if and

only if the given join condition is satisfied.

Following section describe briefly about join types:

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 22 of 23
Natural Join (⋈)

Natural Join can only be performed if there is at least one common

attribute exists between relation. Those attributes must have same

name and domain.

Natural join acts on those matching attributes where the values of

attributes in both relation is same.

Theta (θ) join

Theta joins combines tuples from different relations provided they

satisfy the theta condition.

Notation: R1 ⋈θ R2

R1 and R2 are relations with their attributes (A1, A2, .., An) and (B1,

B2,.. ,Bn) such that no attribute matches that is R1 ∩ R2 = Φ Here θ

is condition in form of set of conditions C.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 23 of 23

Theta join can use all kinds of comparison operators(=,<,>,≤,≥,≠).

Student_Detail = STUDENT ⋈Student.Std = Subject.Class SUBJECT

Equi-Join

When Theta join uses only equality comparison operator it is said to

be Equi-Join. The above example corresponds to equi-join.
