
BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 1 of 49

BCA204T : DATA BASE MANAGEMENT SYSTEMS

Unit - II

Data Modelling Using the Entity-Relationship Model: High level conceptual Data

Models for Database Design with and example., Entity types, Entity sets,

attributes, and Keys, ER Model Concepts, Notation for ER Diagrams, Proper

naming of Schema Constructs, Relationship types of degree higher than two.

Record Storage and Primary File Organization: Secondary Storage Devices.

Buffering of Blocks. Placing file Records on Disk. Operations on Files, File of

unordered Records (Heap files), Files of Ordered Records (Sorted files), Hashing

Techniques, and Other Primary file Organization.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 2 of 49

Unit-II

Data Modeling Using E-R Model

E-R Model

A logical representation of the data for an organization or for a business area is

called E-R Model. It is also called has Entity-Relationship Model.

Entity-Relationship Diagram

A graphical representation of entity-relationship model. Also called E-R diagram or

just ERD.

ER Model: Basic Concepts

Entity relationship model defines the conceptual view of database. It works around

real world entity and association among them. At view level, ER model is

considered well for designing databases.

Entity

An entity is an object that exists and which is distinguishable from other

objects. An entity can be a person, a place, an object, an event, or a concept

about which an organization wishes to maintain data.

For example, in a school database, student, teachers, class and course offered

can be considered as entities. All entities have some attributes or properties that

give them their identity.

An entity set is a collection of similar types of entities. Entity set may contain

entities with attribute sharing similar values. For example, Students set may

contain all the student of a school; likewise Teachers set may contain all the

teachers of school from all faculties. Entities sets need not to be disjoint.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 3 of 49

Attributes

An attribute is a property that describes an entity. All attributes have

values. For example, a student entity may have name, class, age as

attributes. There exists a domain or range of values that can be assigned to

attributes. For example, a student's name cannot be a numeric value. It has

to be alphabetic. A student's age cannot be negative, etc.

Types of attributes:

Simple attribute:

Simple attributes are atomic values, which cannot be divided further. For

example, student's phone-number is an atomic value of 10 digits.

Composite attribute:

Composite attributes are made of more than one simple attribute.

For example, a student's name may have Firstname and Lastname.

Derived attribute:

Derived attributes are attributes, which do not exist physical in the

database, but there values are derived from other attributes presented

in the database.

For another example, Age can be derived from DOB.

Stored attribute:

An attribute whose value cannot be derived from the values of

other attributes is called a stored attribute. For example, DOB

Single-valued attribute:

Single valued attributes contain on single

value. For example: SocialSecurityNumber.

Multi-value attribute:

Multi-value attribute may contain more than one values.

For example, a person can have more than one phone numbers, EmailId etc.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 4 of 49

Entity-set and Keys

Key is an attribute or collection of attributes that uniquely identifies an

entity among entity set.

For example, RegNo of a student makes her/him identifiable among students.

Super Key: Set of attributes (one or more) that collectively identifies

an entity in an entity set.

Candidate Key: Minimal super key is called candidate key that is, supers

keys for which no proper subset are a superkey. An entity set may have

more than one candidate key.

Primary Key: This is one of the candidate key chosen by the

database designer to uniquely identify the entity set.

Relationship

The association among entities is called relationship. For example, employee

entity has relation works_at with department.

Another example is for student who enrolls in some course. Here, Works_at

and Enrolls are called relationship.

Keys

Superkey: an attribute or set of attributes that uniquely identifies an entity.

Composite key: a key requiring more than one attribute.

Candidate key: a superkey such that no proper subset of its attributes is also a

superkey (minimal superkey – has no unnecessary attributes)

Primary key: the candidate key chosen to be used for identifying entities

and accessing records. Unless otherwise noted "key" means "primary key"

Alternate key: a candidate key not used for primary key

Secondary key: attribute or set of attributes commonly used for accessing

records, but not necessarily unique

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 5 of 49

Foreign key: term used in relational databases (but not in the E-R model) for an

attribute that is the primary key of another table and is used to establish a

relationship with that table where it appears as an attribute also.

So a foreign key value occurs in the table and again in the other table.

Mapping Cardinalities:

Cardinality defines the number of entities in one entity set which can

be associated to the number of entities of other set via relationship set.

One-to-one: one entity from entity set A can be associated with at most

one entity of entity set B and vice versa.

One-to-many: One entity from entity set A can be associated with

more than one entities of entity set B but from entity set B one entity

can be associated with at most one entity.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 6 of 49

Many-to-one: More than one entities from entity set A can be associated

with at most one entity of entity set B but one entity from entity set B

can be associated with more than one entity from entity set A.

Many-to-many: one entity from A can be associated with more than one

entity from B and vice versa.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 7 of 49

Notations/Symbols used in E-R diagrams

Entity: an entity can be any object, place person or class.

In E-R diagram entity is represented using rectangles.

For example Student is an entity.

Strong Entities are independently from other entity types. They

always possess one or more attributes that uniquely(primary

key) distinguish each occurrence of the entity. For example

Student is an entity.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 8 of 49

Weak Entities depend on another entity.

Weak entity doesn’t have key attribute of their own.

Double rectangle represents weak entity.

Relationship

A relationship describes relations between entities.

Relationship is represented using diamonds.

Attributes:

An attributes describes a property or characteristic of an entity.

An attribute is represented using eclipse.

For example regno, name, course can be the attribute of student entity.

Key Attribute

Key attribute represents the main characteristic of an entity.

It is used to represent Primary key. Ellipse with underlying

lines represent key attribute.

Composite Attribute

An attributes can be sub divided. These attributes are known as composite

attribute.

Multivalued Attribute

Multivalued attributes are those that are capable of

taking on more than one value. It is represented by double Ellipse.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 9 of 49

Derived Attribute

Derived attributes are attributes whose value can be

calculated from related attribute values. They are represented by dotted ellipse.

Example of E-R diagram

Cardinality of Relationships

Cardinality is the number of entity instances to which another entity set can map

under the relationship. This does not reflect a requirement that an entity has to

participate in a relationship. Participation is another concept.

One-to-one: X-Y is 1:1 when each entity in X is associated with at most one

entity in Y, and each entity in Y is associated with at most one entity in X.

One-to-many: X-Y is 1:M when each entity in X can be associated with many

entities in Y, but each entity in Y is associated with at most one entity in X.

Many-to-many: X:Y is M:M if each entity in X can be associated with many

entities in Y, and each entity in Y is associated with many entities in X

("many" =>one or more and sometimes zero)

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 10 of 49

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 11 of 49

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 12 of 49

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 13 of 49

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 14 of 49

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 15 of 49

ER Diagram for Company Database

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 16 of 49

Relationship types of degree higher than two.

superclass and subclass

A superclass is an entity type that has one or more distinct subgroups with

unique attributes.

For example, the entity type PERSON in below fig is a superclass that includes

faculty, staff, and students as its subgroups. The superclass features only those

attributes that are common for all its subgroups. For example, attributes of

PERSON such as SSN, Name, Address, and Email are shared by all its subgroups

regardless of an individual’s position as student, faculty, or staff within the

university.

The subgroups with unique attributes are defined as subclasses. The PERSON

superclass thus has three subclasses: STUDENT, STAFF, and FACULTY. A subclass

entity type STUDENT has attributes of its superclass along with its own attributes

such as Major, GPA, and Class that uniquely identify the subclass. In the below fig

depicts a superclass and subclasses.

Generalization and Specialization Process

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 17 of 49

Going up in this structure is called generalization, where entities are clubbed

together to represent a more generalized view. For example, a particular student

named, Nisarga can be generalized along with all the students, the entity shall be

student, and further a student is person. The reverse is called specialization

where a person is student, and that student is Nisarga.

Generalization is the process of defining general entity types from a set of

specialized entity types by identifying their common characteristics. In other

words, this process minimizes the differences between entities by identifying a

general entity type that features the common attributes of specialized entities.

Generalization is a bottom-up approach as it starts with the specialized entity

types (subclasses) and forms a generalized entity type (superclass).

For example, suppose if we have given us the specialized entity types FACULTY,

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 18 of 49

STAFF, and STUDENT, and we want to represent these entity types separately in

the E-R model as depicted in above. However, if we examine them closely, we

can observe that a number of attributes are common to all entity types, while

others are specific to a particular entity.

For example, FACULTY, STAFF, and STUDENT all share the attributes Name,

SSN, BirthDate, Address, and Email. On the other hand, attributes such as GPA,

Class, and MajorDept are specific to the STUDENTS; OfficePhone is specific to

FACULTY, and Designation is specific to STAFF. Common attributes suggest that

each of these three entity types is a form of a more general entity type. This

general entity type is simply a PERSON superclass entity with common attributes

of three subclasses (in below fig).

Thus, in the generalization process, we group specialized entity types to form

one general entity type and identify common attributes of specialized entities as

attributes of a general entity type. The general entity type is a superclass of

specialized entity types or subclasses. Generalization is a bottom-up approach.

Specialization

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 19 of 49

Specialization is the process of defining one or more subclasses of a superclass

by identifying its distinguishing characteristics. It starts with the general entity

(superclass) and forms specialized entity types (subclasses) based on specialized

attributes or relationships specific to a subclass.

For example, in the above Figure. LIBRARY ITEM is an entity type with several

attributes such as IdentificationNo, RecordingDate, Frequency, and Edition. After

careful review of these items, it should become clear that some items such as

books do not have values for attributes such as Frequency, RecordingDate, and

CourseNo, while Video CDs do not have an Author or an Edition.

In addition, all items have common attributes such as IdentificationNo, Location,

and Subject. Someone creating a library database, then, could use the

specialization process to identify superclass and subclass relationships. In this

case, the original entity LIBRARY ITEM forms a superclass entity type made up of

attributes shared by all items, while specialized items with distinguishing

attributes, such as BOOK, JOURNALS, and VIDEOCD, form subclasses as shown in

below fig. Specialization is thus a top-down approach.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 20 of 49

Definition

Generalization is the process of defining a general entity type from a set of

specialized entity types by identifying their common characteristics.

Specialization is a process of defining one or more subclasses of a superclass by

identifying their distinguishing characteristics.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 21 of 49

Record Storage and Primary File Organization

The collection of data that makes up a computerized database must be stored

physically on some computer storage medium. The DBMS software can then

retrieve, update, and process this data as needed. Computer storage media form

a storage hierarchy that includes two main categories:

Primary storage. This category includes storage media that can be operated on

directly by the computer’s central processing unit (CPU), such as the computer’s

main memory and smaller but faster cache memories. Primary storage usually

provides fast access to data but is of limited storage capacity. Although main

memory capacities have been growing rapidly in recent

years, they are still more expensive and have less storage capacity than

secondary and tertiary storage devices.

Secondary and tertiary storage. This category includes magnetic disks,

optical disks (CD-ROMs, DVDs, and other similar storage media), and

tapes. Hard-disk drives are classified as secondary storage, whereas removable

media such as optical disks and tapes are considered tertiary storage.

These devices usually have a larger capacity, cost less, and provide slower

access to data than do primary storage devices. Data in secondary or

tertiary storage cannot be processed directly by the CPU; first it must be

copied into primary storage and then processed by the CPU.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 22 of 49

Memory Hierarchies and Storage Devices

In a modern computer system, data resides and is transported throughout a

hierarchy of storage media. The highest-speed memory is the most expensive

and is therefore available with the least capacity. The lowest-speed memory is

offline tape storage, which is essentially available in indefinite storage capacity.

At the primary storage level, the memory hierarchy includes at the most expensive

end, cache memory, which is a static RAM (Random Access Memory). Cache

memory is typically used by the CPU to speed up execution of program

instructions using techniques such as prefetching and pipelining.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 23 of 49

The next level of primary storage is DRAM (Dynamic RAM), which provides the

main work area for the CPU for keeping program instructions and data. It is

popularly called main memory. The advantage of DRAM is its low cost, which

continues to decrease; the drawback is its volatility1 and lower speed

compared with static RAM.

At the secondary and tertiary storage level, the hierarchy includes magnetic

disks, as well as mass storage in the form of CD-ROM (Compact Disk–Read-Only

Memory) and DVD (Digital Video Disk or Digital Versatile Disk) devices, and finally

tapes at the least expensive end of the hierarchy. The storage capacity is

measured in kilobytes (Kbyte or 1000 bytes), megabytes (MB or 1 million bytes),

gigabytes (GB or 1 billion bytes), and even terabytes (1000 GB). The word

petabyte (1000 terabytes or 10**15 bytes) is now becoming relevant in the

context of very large repositories of data in physics, astronomy, earth sciences,

and other scientific applications.

Programs reside and execute in DRAM. Generally, large permanent databases

reside on secondary storage, (magnetic disks), and portions of the database are

read into and written from buffers in main memory as needed. Nowadays,

personal computers and workstations have large main memories of hundreds of

megabytes of RAM and DRAM, so it is becoming possible to load a large part of

the database into main memory.

Between DRAM and magnetic disk storage, another form of memory, flash

memory, is becoming common, particularly because it is nonvolatile. Flash

memories are high-density, high-performance memories using EEPROM

(Electrically Erasable Programmable Read-Only Memory) technology.

The advantage of flash memory is the fast access speed; the disadvantage is

that an entire block must be erased and written over simultaneously. Flash

memory cards are appearing as the data storage medium in appliances with

capacities ranging from a few megabytes to a few gigabytes.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 24 of 49

These are appearing in cameras, MP3 players, cell phones, PDAs, and so on.

USB (Universal Serial Bus) flash drives have become the most portable medium

for carrying data between personal computers; they have a flash memory

storage device integrated with a USB interface.

CD-ROM (Compact Disk – Read Only Memory) disks store data optically and are

read by a laser. CD-ROMs contain prerecorded data that cannot be overwritten.

WORM (Write-Once-Read-Many) disks are a form of optical storage used for

archiving data; they allow data to be written once and read any number of times

without the possibility of erasing. They hold about half a gigabyte of data per

disk and last much longer than magnetic disks.

The DVD is another standard for optical disks allowing 4.5 to 15 GB of storage

per disk. Most personal computer disk drives now read CDROM and DVD disks.

Typically, drives are CD-R (Compact Disk Recordable) that can create CD-ROMs

and audio CDs (Compact Disks), as well as record on DVDs.

Finally, magnetic tapes are used for archiving and backup storage of data. Tape

jukeboxes—which contain a bank of tapes that are catalogued and can be

automatically loaded onto tape drives—are becoming popular as tertiary storage

to hold terabytes of data. For example, NASA’s EOS (Earth Observation Satellite)

system stores archived databases. Many large organizations are already finding it

normal to have terabyte-sized databases.

The term very large database can no longer be precisely defined because disk

storage capacities are on the rise and costs are declining. Very soon the term

may be reserved for databases containing tens of terabytes.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 25 of 49

Secondary Storage Devices

Magnetic disks are used for storing large amounts of data. The most basic unit of

data on the disk is a single bit of information. Bits are grouped into bytes (or

characters). Byte sizes are typically 4 to 8 bits, depending on the computer and

the device. We assume that one character is stored in a single byte, and we use

the terms byte and character interchangeably. The capacity of a disk is the

number of bytes it can store, Hard disks for personal computers typically hold

from several hundred MB up to tens of GB; and large disk packs used with

servers and mainframes have capacities of hundreds of GB. Disk capacities

continue to grow as technology improves.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 26 of 49

Whatever their capacity, all disks are made of magnetic material shaped as a thin

circular disk, as shown in Figure(a), and protected by a plastic or acrylic cover.

A disk is single-sided if it stores information on one of its surfaces only and

doublesided if both surfaces are used. To increase storage capacity, disks are

assembled into a disk pack, as shown in Figure (b), which may include many

disks and therefore many surfaces. Information is stored on a disk surface in

concentric circles of small width, each having a distinct diameter. Each circle is

called a track. In disk packs, tracks with the same diameter on the various

surfaces are called a cylinder because of the shape they would form if

connected in space. The concept of a cylinder is important because data stored

on one cylinder can be retrieved much faster than if it were distributed among

different cylinders.

The number of tracks on a disk ranges from a few hundred to a few thousand, and

the capacity of each track typically ranges from tens of Kbytes to 150 Kbytes.

Because a track usually contains a large amount of information, it is divided into

smaller blocks or sectors. The division of a track into sectors is hard-coded on

the disk surface and cannot be changed.

The division of a track into equal-sized disk blocks (or pages) is set by the

operating system during disk formatting (or initialization). Block size is fixed

during initialization and cannot be changed dynamically. Typical disk block sizes

range from 512 to 8192 bytes. A disk with hard-coded sectors often has the

sectors subdivided into blocks during initialization. Blocks are separated by fixed-

size interblock gaps, which include specially coded control information written

during disk initialization. This information is used to determine which block on

the track follows each interblock gap.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 27 of 49

A disk is a random access addressable device. Transfer of data between main

memory and disk takes place in units of disk blocks. The hardware address of a

block—a combination of a cylinder number, track number (surface number within

the cylinder on which the track is located), and block number (within the track) is

supplied to the disk I/O (input/output) hardware.

The address of a buffer—a contiguous reserved area in main storage that holds

one disk block—is also provided. For a read command, the disk block is copied

into the buffer; whereas for a write command, the contents of the buffer are

copied into the disk block. Sometimes several contiguous blocks, called a cluster,

may be transferred as a unit. In this case, the buffer size is adjusted to match the

number of bytes in the cluster.

The actual hardware mechanism that reads or writes a block is the disk

read/write head, which is part of a system called a disk drive.A disk or disk

pack is mounted in the disk drive, which includes a motor that rotates the disks. A

read/write head includes an electronic component attached to a mechanical arm.

Disk packs with multiple surfaces are controlled by several read/write heads—one

for each surface, as shown in Figure (b). All arms are connected to an actuator

attached to another electrical motor, which moves the read/write heads in unison

and positions them precisely over the cylinder of tracks specified in a block

address.

Disk drives for hard disks rotate the disk pack continuously at a constant speed

(typically ranging between 5,400 and 15,000 rpm(revolutions per minute)). Once the

read/write head is positioned on the right track and the block specified in the block

address moves under the read/write head, the electronic component of the read/write

head is activated to transfer the data. Some disk units have fixed read/write heads,

with as many heads as there are tracks. These are called fixed-head disks, whereas

disk units with an actuator are called movable-head disks.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 28 of 49

For fixed-head disks, a track or cylinder is selected by electronically switching to

the appropriate read/write head rather than by actual mechanical movement;

consequently, it is much faster. However, the cost of the additional read/write

heads is quite high, so fixed-head disks are not commonly used.

A disk controller, typically embedded in the disk drive, controls the disk drive

and interfaces it to the computer system. The controller accepts high-level I/O

commands and takes appropriate action to position the arm and causes the

read/write action to take place. To transfer a disk block, given its address, the disk

controller must first mechanically position the read/write head on the correct

track. The time required to do this is called the seek time. Typical seek times are

5 to 10 msec on desktops and 3 to 8 msecs on servers. There is another delay—

called the rotational delay or latency—while the beginning of the desired block

rotates into position under the read/write head. It depends on the rpm of the disk.

Some additional time is needed to transfer the data; this is called the block

transfer time. Hence, the total time needed to locate and transfer an arbitrary

block, given its address, is the sum of the seek time, rotational delay, and block

transfer time.

Buffering of Blocks

When several blocks need to be transferred from disk to main memory and all the

block addresses are known, several buffers can be reserved in main memory to

speed up the transfer. While one buffer is being read or written, the CPU can

process data in the other buffer because an independent disk I/O processor

(controller) exists that, once started, can proceed to transfer a data block

between memory and disk independent of and in parallel to CPU processing.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 29 of 49

Figure (a) illustrates how two processes can proceed in parallel. Processes A and B

are running concurrently in an interleaved fashion, whereas processes C and D

are running concurrently in a parallel fashion. When a single CPU controls

multiple processes, parallel execution is not possible. However, the processes can

still run concurrently in an interleaved way. Buffering is most useful when

processes can run concurrently in a parallel fashion, either because a separate disk

I/O processor is available or because multiple CPU processors exist.

Figure (b) illustrates how reading and processing can proceed in parallel when the

time required to process a disk block in memory is less than the time required to

read the next block and fill a buffer. The CPU can start processing a block once its

transfer to main memory is completed; at the same time, the disk I/O processor can

be reading and transferring the next block into a different buffer. This technique is

called double buffering and can also be used to read a continuous

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 30 of 49

stream of blocks from disk to memory. Double buffering permits continuous

reading or writing of data on consecutive disk blocks, which eliminates the seek

time and rotational delay for all but the first block transfer. Moreover, data is

kept ready for processing, thus reducing the waiting time in the programs.

Placing file Records on Disk

Data is usually stored in the form of records. Each record consists of a collection

of related data values or items, where each value is formed of one or more

bytes and corresponds to a particular field of the record. Records usually describe

entities and their attributes.

For example, an EMPLOYEE record represents an employee entity, and each field

value in the record specifies some attribute of that employee, such as

EmployeeID, Name, DOB, Department, Salary.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 31 of 49

A collection of field names and their corresponding data types constitutes a record

type or record format definition.

A data type, associated with each field, specifies the types of values a field

can take.

The data type of a field is usually include numeric (integer, long integer, or

floating point), string of characters (fixed-length or varying), Boolean (having 0

and 1 or TRUE and FALSE values only), and sometimes specially coded date and

time data types.

Files, Fixed-Length Records, and Variable-Length Records

A file is a sequence of records. In many cases, all records in a file are of the same

record type. If every record in the file has exactly the same size (in bytes), the file

is said to be made up of fixed-length records. If different records in the file

have different sizes, the file is said to be made up of variable-length records.

Allocating File Blocks on Disk

There are several standard techniques for allocating the blocks of a file on disk.

In contiguous allocation, the file blocks are allocated to consecutive disk blocks.

This makes reading the whole file very fast using double buffering, but it makes

expanding the file difficult.

In linked allocation, each file block contains a pointer to the next file block.

This makes it easy to expand the file but makes it slow to read the whole file. A

combination of the two allocates clusters of consecutive disk blocks, and the

clusters are linked. Clusters are sometimes called file segments or extents.

In indexed allocation, where one or more index blocks contain pointers to

the actual file blocks. It is also common to use combinations of these techniques.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 32 of 49

File Headers

A file header or file descriptor contains information about a file that is needed

by the system programs that access the file records. The header includes

information to determine the disk addresses of the file blocks as well as to

record format descriptions, which may include field lengths and the order of

fields within a record for fixed-length unspanned records and field type codes,

separator characters, and record type codes for variable-length records.

Operations on Files

Operations on files are usually grouped into retrieval operations and update

operations.

The retrieval operations do not change any data in the file, but only locate

certain records so that their field values can be examined and processed. The

latter change the file by insertion or deletion of records or by modification of field

values. In either case, we may have to select one or more records for retrieval,

deletion, or modification based on a selection condition (or filtering

condition), which specifies criteria that the desired record or records must satisfy.

Actual operations for locating and accessing file records vary from system to

system. DBMS software programs, access records by using these commands.

Open. Prepares the file for reading or writing. Allocates appropriate buffers

(typically at least two) to hold file blocks from disk, and retrieves the file

header. Sets the file pointer to the beginning of the file.

Reset. Sets the file pointer of an open file to the beginning of the file.

Find (or Locate). Searches for the first record that satisfies a search condition.

Transfers the block containing that record into a main memory buffer

(if it is not already there). The file pointer points to the record in the buffer and

it becomes the current record

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 33 of 49

Read (or Get). Copies the current record from the buffer to a program

variable in the user program. This command may also advance the current

record pointer to the next record in the file, which may necessitate

reading the next file block from disk.

FindNext. Searches for the next record in the file that satisfies the

search condition. Transfers the block containing that record into a main

memory buffer.

Delete. Deletes the current record and (eventually) updates the file on

disk to reflect the deletion.

Modify. Modifies some field values for the current record and

(eventually) updates the file on disk to reflect the modification.

Insert. Inserts a new record in the file by locating the block where the record

is to be inserted, transferring that block into a main memory buffer (if it is

not already there), writing the record into the buffer, and (eventually) writing

the buffer to disk to reflect the insertion.

Close. Completes the file access by releasing the buffers and performing

any other needed cleanup operations.

The preceding (except for Open and Close) are called record-at-a-time

operations

because each operation applies to a single record. It is possible to streamline

the operations Find, FindNext, and Read into a single operation, Scan, whose

description is as follows:

Scan. If the file has just been opened or reset, Scan returns the first record;

otherwise it returns the next record. If a condition is specified with the

operation, the returned record is the first or next record satisfying the condition.

FindAll. Locates all the records in the file that satisfy a search condition.

Find (or Locate) n. Searches for the first record that satisfies a search

condition and then continues to locate the next n – 1 records satisfying the same

condition. Transfers the blocks containing the n records to the main memory

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 34 of 49

buffer (if not already there).

FindOrdered. Retrieves all the records in the file in some specified

order. Reorganize. Starts the reorganization process. As we shall see,

some file organizations require periodic reorganization. An example is to

reorder the file records by sorting them on a specified field.

Files of Unordered Records (Heap Files)

In this simplest and most basic type of organization, records are placed in the

file in the order in which they are inserted, so new records are inserted at the

end of the file. Such an organization is called a heap or pile file.

Inserting a new record is very efficient. The last disk block of the file is copied

into a buffer, the new record is added, and the block is then rewritten back to

disk. The address of the last file block is kept in the file header.

Searching for a record using any search condition involves a linear search

through the file block by block—an expensive procedure. If only one record

satisfies the search condition, then, on the average, a program will read into

memory and search half the file blocks before it finds the record. For a file of b

blocks, this requires searching (b/2) blocks, on average. If no records or

several records satisfy the search condition, the program must read and search

all b blocks in the file.

To delete a record, a program must first find its block, copy the block into a

buffer, delete the record from the buffer, and finally rewrite the block back to

the disk. This leaves unused space in the disk block. Deleting a large number of

records in this way results in wasted storage space. Another technique used for

record deletion is to have an extra byte or bit, called a deletion marker, stored

with each record. A record is deleted by setting the deletion marker to a certain

value.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 35 of 49

Files of Ordered Records (Sorted Files)

We can physically order the records of a file on disk based on the values of one of

their fields—called the ordering field. This leads to an ordered or sequential file. If

the ordering field is also a key field of the file—a field guaranteed to have a unique

value in each record—then the field is called the ordering key for the file.

A binary search for disk files can be done on the blocks rather than on the

records. Suppose that the file has b blocks numbered 1, 2, ..., b; the records are

ordered by ascending value of their ordering key field; and we are searching for a

record whose ordering key field value is K.Assuming that disk addresses of the

file blocks are available in the file header, the binary search can be described by

Algorithm shown below.

Binary Search on an Ordering Key of a Disk File

L 1; U  b; (* b is the number of file blocks *)

while (U ≥ L) do

begin i (L + U) div 2;

read block i of the file into the buffer;

if K < (ordering key field value of the first record in block i)

then U  i – 1

else if K > (ordering key field value of the last record in block i)

then L  i + 1

else if the record with ordering key field value = K is in the buffer

then goto found

else goto notfound;

end;

goto notfound;

A binary search usually accesses log2(b) blocks, whether the record is found or

not—an improvement over linear searches, where, on the average, (b/2) blocks

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 36 of 49

are accessed when the record is found and b blocks are accessed when the

record is not found.

Inserting and deleting records are expensive operations for an ordered file

because the records must remain physically ordered. To insert a record, we must

find its correct position in the file, based on its ordering field value, and then make

space in the file to insert the record in that position. For a large file this can be

very time consuming because, on the average, half the records of the file must be

moved to make space for the new record. This means that half the file blocks

must be read and rewritten after records are moved among them. For record

deletion, the problem is less severe if deletion markers and periodic reorganization

are used.

Modifying a field value of a record depends on two factors: the search condition

to locate the record and the field to be modified. If the search condition involves

the ordering key field, we can locate the record using a binary search; otherwise

we must do a linear search. A nonordering field can be modified by changing the

record and rewriting it in the same physical location on disk—assuming fixed-

length records. Modifying the ordering field means that the record can change its

position in the file. This requires deletion of the old record followed by insertion

of the modified record.

Hashing Techniques

Hashing is a method which provides very fast access to records under certain

search conditions. This organization is usually called a hash file. The search

condition must be an equality condition on a single field, called the hash field. In

most cases, the hash field is also a key field of the file, in which case it is called

the hash key. The idea behind hashing is to provide a function h, called a hash

function or randomizing function, which is applied to the hash field value of a

record and yields the address of the disk block in which the record is stored. A

search for the record within the block can be carried out in a main memory buffer.

For most records, we need only a single-block access to retrieve that record.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 37 of 49

Hashing is also used as an internal search structure within a program whenever

a group of records is accessed exclusively by using the value of one field.

Hashing can be used for internal files. it can be modified to store external files on

disk. It can also be extended to dynamically growing files.

Internal Hashing

Hashing is typically implemented as a hash table through the use of

an array of records. Let the array index range is from 0 to M–1, as

shown in Figure(a); then we have M slots whose addresses correspond to the

array indexes. We choose a hash function that transforms the hash field value

into an integer between 0 and M-1. One common hash function is the h(K) = K

mod M function, which returns the remainder of an integer hash field value K

after division by M; this value is then used for the record address.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 38 of 49

Noninteger hash field values can be transformed into integers before the mod

function is applied. For character strings, the numeric (ASCII) codes associated

with characters can be used in the transformation—for example, by multiplying

those code values. For a hash field whose data type is a string of 20

characters, Algorithm (a) can be used to calculate the hash address.

Algorithm Two simple hashing algorithms: (a) Applying the mod hash

function to a character string K. (b) Collision resolution by open addressing.

(a) temp  1;

for i 1 to 20 do temp  temp * code(K[i]) mod M ;

hash_address  temp mod M;

(b) i  hash_address(K); a i;

if location i is occupied

then begin i  (i + 1) mod M;

while (i ≠ a) and location i is occupied

do i  (i + 1) mod M;

if (i = a) then all positions are full

else new_hash_address  i;

end;

Other hashing functions can be used. One technique, called folding, involves

applying an arithmetic function such as addition or a logical function such as

exclusive or to different portions of the hash field value to calculate the hash

address.

A collision occurs when the hash field value of a record that is being inserted

hashes to an address that already contains a different record. In this situation,

we must insert the new record in some other position. The process of finding

another position is called collision resolution.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 39 of 49

There are numerous methods for collision resolution, including the following:

Open addressing. Ponce a position specified by the hash address is found to

be occupied, the program checks the subsequent positions in order until an

unused (empty) position is found. Algorithm (b) may be used for this purpose.

Chaining. For this method, various overflow locations are kept, usually by

extending the array with a number of overflow positions. Additionally, a pointer

field is added to each record location. A collision is resolved by placing the new

record in an unused overflow location and setting the pointer of

the occupied hash address location to the address of that overflow location. A

linked list of overflow records for each hash address is thus maintained, as

shown in Figure (b).

Multiple hashing. The program applies a second hash function if the first

results in a collision. If another collision results, the program uses open

addressing or applies a third hash function and then uses open addressing if

necessary.

External Hashing for Disk Files

Hashing for disk files is called external hashing. the target address space is in

external hashing is made of buckets, A bucket is either one disk block or a cluster

of contiguous blocks. The hashing function maps the indexing field’s value into a

relative bucket number. A table maintained in the file header converts the bucket

number into the corresponding disk block address as shown in below Figure.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 40 of 49

The hashing scheme is called static hashing if a fixed number of buckets is

allocated.

A major drawback of static hashing is that the number of buckets must be

chosen large enough that can handle large files. That is, it is difficult to expand or

shrink the file dynamically.

Dynamic Hashing

Two hashing techniques are

Extendible hashing and Liner hashing.

Extendible hashing

Basic Idea:

 Maintain a directory of bucket addresses instead of just hashing to

buckets directly. (indirection)


 The directory can grow, but its size is always a power of 2.


 At any time, the directory consists of d levels, and a directory of depth

d has 2d bucket pointers.


- However, not every directory entry (bucket pointer) has to point to a

unique bucket. More than one directory entry can point to the same one.

- Each bucket has a local depth d’ that indicates how many of the d bits of

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 41 of 49

the hash value are actually used to indicate membership in the bucket.

 The depth d of the directory is based on the # of bits we use from

each hash value.


- The hash function produces an output integer which can be treated as a

sequence of k bits. We use the first d bits in the hash value produced

to look up an entry in the directory. The directory entry points us to the

block that contains records whose keys hash to that value.

Example:

-Assume each hashed key is a

sequence of four binary digits.

-Store values 0001, 1001, 1100.

Insert 0100

Insert 1111

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 42 of 49

Directory grows one level.

Insert 1101

Directory grows one level.

Delete 1111

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 43 of 49

Merge Blocks and Shrink Directory

Linear hashing

 Linear hashing allows a hash file to expand and shrink dynamically

without the need of a directory.


- Thus, directory issues like extendible hashing are not present.

 A linear hash table starts with 2d buckets where d is the # of bits used

from the hash value to determine bucket membership.


- The size of the table will grow gradually, but not double in size.

1) Every time there is a bucket overflow.

2) When the load factor of the hash table reaches a given

point. We will examine the second growth method.

Since overflows may not always trigger growth, note that each bucket

may use overflow blocks.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 44 of 49

Parallelizing Disk Access Using RAID Technology

RAID (originally redundant array of inexpensive disks; now commonly

redundant array of independent disks) is a data storage that combines

multiple disk drive components into a logical unit for the purposes of data

redundancy or performance improvement.

Disk striping is the process of dividing a body of data into blocks and spreading

the data blocks across several partitions on several hard disks.

Striping can be done at the byte level, or in blocks. Byte-level striping means

that the file is broken into "byte-sized pieces". The first byte of the file is sent to

the first drive, then the second to the second drive, and so on. Sometimes byte-

level striping is done as a sector of 512 bytes.

Block-level striping means that each file is split into blocks of a certain size and

those are distributed to the various drives. The size of the blocks used is also

called the stripe size (or block size, or several other names), and can be selected

from a variety of choices when the array is set up.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 45 of 49

RAID 0

RAID 0 performs what is called ―Block Striping‖ across multiple drives. The data

is fragmented, or broken up, into blocks and striped among the drives. This level

increases the data transfer rate and data storage since the controller can access

the hard disk drives simultaneously. However, this level has no redundancy. If

single drive fails, the entire array becomes inaccessible. The more drivers in the

array the higher the data transfer but higher risk of a failure. RAID level 0 requires

2 drives to implement.

Advantages

I/O performance is greatly improved by spreading the I/O load across

many channels and drives

Best performance is achieved when data is striped across multiple

controllers with only one drive per controller

No parity calculation overhead is involved

Very simple design

Easy to implement

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 46 of 49

Disadvantages

Not a "True" RAID because it is NOT fault-tolerant

The failure of just one drive will result in all data in an array being

lost Should never be used in mission critical environments

Recommended Applications

Video Production and Editing

Image Editing

Pre-Press Applications

Any application requiring high bandwidth

RAID 1

RAID 1 is used to create a complete mirrored set of disks. Usually employing two

disks, RAID 1 writes data as a normal hard drive would but makes an exact copy of

the primary drive with the second drive in the array. This mirrored copy is constantly

updated as data on the primary drive changes. By keeping this mirrored backup, the

array decreases the chance of failure from 5% over three years to

0.25%. Should a drive fail, the failed drive should be replaced as soon as possible

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 47 of 49

to keep the mirror updated. RAID Level 1 requires a minimum of 2 drives

to implement.

Advantages

Twice the Read transaction rate of single disks, same Write transaction rate

as single disks

100% redundancy of data means no rebuild is necessary in case of a

disk failure, just a copy to the replacement disk

Transfer rate per block is equal to that of a single disk

Under certain circumstances, RAID 1 can sustain multiple simultaneous drive

failures

Simplest RAID storage subsystem design

Disadvantages

Highest disk overhead of all RAID types (100%) - inefficient Typically

the RAID function is done by system software, loading the

CPU/Server and possibly degrading throughput at high activity levels.

Hardware implementation is strongly recommended

May not support hot swap of failed disk when implemented in "software"

Recommended Applications

Accounting

Payroll

Financial

Any application requiring very high availability

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 48 of 49

RAID 5

RAID 5 is the most stable of the more advanced RAID levels and offers

redundancy, speed, and the ability to rebuild a failed drive. RAID 5 uses the

same block level striping as other RAID levels but adds another level of data

protection by creating a ―parity block‖. These blocks are stored alongside the other

blocks in the array in a staggered pattern and are used to check that the data has

been written correctly in the drive.

when an error or failure occur, the parity block will be used to locate the

information stored on the other member disks and parity blocks in the array to

rebuild the data correctly. This can be done on-the-fly without interruptions to

applications or other programs running on the computer. The computer will notify

the user of the failed drive, but will continue to operate normally. This state of

operation is known as Interim Data Recovery Mode. Performance may suffer

while the disk is being rebuilt, but operation should continue. The failed drive

should be replaced as soon as possible. RAID Level 5 requires a minimum of 3

drives to implement.

BCA204T: DATA BASE MANAGEMENT SYSTEMS Page 49 of 49

Advantages

Highest Read data transaction rate

Medium Write data transaction rate

Low ratio of Error Correction Code (Parity) disks to data disks means

high efficiency

Good aggregate transfer rate

Disadvantages

Disk failure has a medium impact on

throughput Most complex controller design

Difficult to rebuild in the event of a disk failure (as compared to RAID 1)

Individual block data transfer rate same as single disk

Recommended Applications

File and Application servers

Database servers

Web, E-mail, and News servers

Intranet servers

Most versatile RAID level
