
1

-

 DATA BASE MANAGEMENT SYSTEMS

Unit - I

Introduction: Database and Database Users, Characteristics of the Database

Approach, Different people behind DBMS, Implications of Database Approach,

Advantages of using DBMS, When not to use a DBMS. Database System Concepts

and architecture: Data Models, Schemas, and Instances. DBMS Architecture and

Data Independence., Database languages and interfaces. The database system

Environment,Classification of DBMS.

2

Introduction

Database is a collection of related data. Database management system is

software designed to assist the maintenance and utilization of large scale collection of

data. DBMS came into existence in 1960 by Charles. Integrated data store which is also

called as the first general purpose DBMS. Again in 1960 IBM brought IMS-Information

management system. In 1970 Edgor Codd at IBM came with new database called

RDBMS. In 1980 then came SQL Architecture- Structure Query Language. In 1980 to

1990 there were advances in DBMS e.g. DB2, ORACLE.

Data: Data is raw fact or figures or entity.

Information: The processed data is called information.

Database: A database is a collection of related data.

For example, a university database might contain information about the following:

 Entities such as students, faculty and courses.




 Relationships between entities, such as students' enrollment in courses,
faculty teaching courses.



Database Management System:

A Database Management System (DBMS) is a collection of program that

enables user to create, maintain and manipulate a database.

The DBMS is hence a general purpose software system that facilitates the

process of defining, constructing and manipulating database for various

applications.

Characteristics of DBMS

• To incorporate the requirements of the organization, system should be designed

for easy maintenance.

3

• Information systems should allow interactive access to data to obtain new

information without writing fresh programs.

• System should be designed to co-relate different data to meet new

requirements.

• An independent central repository, which gives information and meaning of

available data is required.

• Integrated database will help in understanding the inter-relationships between

data stored in different applications.

• The stored data should be made available for access by different users

simultaneously.

• Automatic recovery feature has to be provided to overcome the problems with

processing system failure.

Different people behind DBMS

These apply to "large" databases, not "personal" databases that are defined,

constructed, and used by a single person via, say, Microsoft Access.

There are two categories of people behind DBMS

a) Those who actually use and control the database content, and those who

design, develop and maintain database applications (called ―Actors on the

Scene)

b) Those who design and develop the DBMS software and related tools, and the

computer systems operators (called ―Workers Behind the Scene).

a) Actors on the Scene

1. Database Administrator (DBA): DBA is a person who is responsible for

authorizing access to the database, coordinating and monitoring its use, and

acquiring software and hardware resources as needed.

2. Database Designers: They are responsible for identifying the data to be

4

stored and for choosing an appropriate way to organize it. They also define

views for different categories of users. The final design must be able to

support the requirements of all the user sub-groups.

3.End Users: These are persons who access the database for

querying, updating, and report generation. They are main reason

for database's existence!

Casual end users: use database occasionally, needing different information each

time; use query language to specify their requests; typically middle- or high-level

managers.

Naive/Parametric end users: Typically the biggest group of users; frequently

query/update the database using standard canned transactions that have been

carefully programmed and tested in advance. Examples:

bank tellers check account balances, post withdrawals/deposits,reservation clerks

for airlines, hotels, etc., check availability of seats/rooms and make reservations.

Sophisticated end users: engineers, scientists, business analysts who

implement their own applications to meet their complex needs.

Stand-alone users: Use "personal" databases, possibly employing a

special-purpose (e.g., financial) software package. Mostly maintain

personal databases using ready-to-use packaged applications.

 An example is a tax program user that creates its own internal database.

Another example is maintaining an address book

4. System Analysts, Application Programmers, Software Engineers:

System Analysts: determine needs of end users, especially naive and

parametric users, and develop specifications for canned transactions that meet

these needs.

Application Programmers: Implement, test, document, and maintain

programs that satisfy the specifications mentioned above.

5

c) Workers Behind the Scene

1)DBMS system designers/implementors: provide the DBMS software that is

at the foundation of all this!

2) Tool developers: design and implement software tools facilitating database

system design, performance monitoring, creation of graphical user interfaces,

prototyping, etc.

3) Operators and maintenance personnel: responsible for the day-to-day

operation of the system.

Advantages of a DBMS

Using a DBMS to manage data has many advantages:

Data independence: Application programs should be as independent as possible

from details of data representation and storage. The DBMS can provide an

abstract view of the data to insulate application code from such details.

Efficient data access: A DBMS utilizes a variety of sophisticated techniques to

store and retrieve data efficiently. This feature is especially important if the data

is stored on external storage devices.

Data integrity and security: If data is always accessed through the DBMS, the

DBMS can enforce integrity constraints on the data. For example, before

inserting salary information for an employee, the DBMS can check that the

department budget is not exceeded. Also, the DBMS can enforce access controls

that govern what data is visible to different classes of users.

Data administration: When several users share the data, centralizing the

administration of data can offer significant improvements. Experienced

professionals who understand the nature of the data being managed, and how

different groups of users use it, can be responsible for organizing the data

representation to minimize redundancy and for fine-tuning the storage of the

6

data to make retrieval efficient.

Concurrent access and crash recovery: A DBMS schedules concurrent

accesses to the data in such a manner that users can think of the data as being

accessed by only one user at a time. Further, the DBMS protects users from

the effects of system failures.

Reduced application development time: Clearly, the DBMS supports many

important functions that are common to many applications accessing data stored

in the DBMS. This, in conjunction with the high-level interface to the data,

facilitates quick development of applications. Such applications are also likely to be

more robust than applications developed from scratch because many important

tasks are handled by the DBMS instead of being implemented by the application.

Functions of DBMS

• Data Definition: The DBMS provides functions to define the structure of the

data in the application. These include defining and modifying the record structure,

the type and size of fields and the various constraints to be satisfied by the data

in each field.

• Data Manipulation: Once the data structure is defined, data needs to be

inserted, modified or deleted. These functions which perform these operations

are part of DBMS. These functions can handle plashud and unplashud data

manipulation needs. Plashud queries are those which form part of the application.

unplaced queries are ad-hoc queries which performed on a need basis.

• Data Security & Integrity: The DBMS contains modules which handle the

security and integrity of data in the application.

• Data Recovery and Concurrency: Recovery of the data after system failure

and concurrent access of records by multiple users is also handled by DBMS.

• Data Dictionary Maintenance: Maintaining the data dictionary which contains

the data definition of the application is also one of the functions of DBMS.

• Performance: Optimizing the performance of the queries is one of the

important functions of DBMS.

7

When not to use a DBMS

a) Main inhibitors (costs) of using a DBMS:

i) High initial investment and possible need for additional hardware.

ii) Overhead for providing generality, security, concurrency

control, recovery, and integrity functions.

b) When a DBMS may be unnecessary:

i) If the database and applications are simple, well defined and

not expected to change.

ii) If there are stringent real-time requirements that may not be met

because of DBMS overhead.

iii)If access to data by multiple users is not required.

c) When no DBMS may be sufficient:

i) If the database system is not able to handle the complexity of data

because of modeling limitations

ii) If the database users need special operations not supported by the DBMS.

Role of Database Administrator.

Typically there are three types of users for a DBMS:

1. The END User who uses the application. Ultimately he is the one who

actually puts the data into the system into use in business. This user need not

know anything about the organization of data in the physical level.

2. The Application Programmer who develops the application programs. He/She

has more knowledge about the data and its structure. He/she can manipulate the

data using his/her programs. He/she also need not have access and knowledge

of the complete data in the system.

3. The Data base Administrator (DBA) who is like the super-user of the system.

8

The role of DBA is very important and is defined by the following functions.

• Defining the schema: The DBA defines the schema which contains the

structure of the data in the application. The DBA determines what data

needs to be present in the system and how this data has to be

presented and organized.

• Liaising with users: The DBA needs to interact continuously with the

users to understand the data in the system and its use.

• Defining Security & Integrity checks: The DBA finds about the access

restrictions to be defined and defines security checks accordingly.

Data Integrity checks are defined by the DBA.

• Defining Backup/Recovery Procedures: The DBA also defines procedures

for backup and recovery. Defining backup procedure includes specifying

what data is to be backed up, the periodicity of taking backups and also

the medium and storage place to backup data.

• Monitoring performance: The DBA has to continuously monitor the

performance of the queries and take the measures to optimize all the

queries in the application.

Database Manager

Database manager is a program module which provides the interface between

the low level data stored in the database and the application programs and

queries submitted to the system:

– The database manager would translate DML statement into low level

file system commands for storing, retrieving, and updating data in the

database.

– Integrity enforcement. Database manager enforces integrity by checking

consistency constraints like the bank balance of customer must be maintained

to a minimum of Rs. 1000, etc.

– Security enforcement. Unauthorized users are prohibited to view the

information stored in the data base.

9

– Backup and recovery. Backup and recovery of database is necessary to ensure

that the database must remain consistent despite the fact of failures.

Database Users

Database users are the people who need information from the database to

carry out their business responsibility. The database users can be broadly

classified into two categories like application programmers and end users.

Sophisticated End Users

Sophisticated end users interact with the system without writing programs.

They form requests by writing queries in a database query language. These

are submitted to query processor. Analysts who submit queries to explore

data in the database fall in this category.

Specialized End Users

Specialized end users write specialized database application that does not fit

into data-processing frame work. Application involves knowledge base and

expert system, environment modeling system, etc.

Naive End Users

Naive end user interact with the system by using permanent application program

Example: Query made by the student, namely number of books borrowed

in library database.

System Analysts

10

System analysts determine the requirements of end user, and develop

specification for canned transaction that meets this requirement.

Canned Transaction

Readymade programs through which naive end users interact with the database

is called canned transaction.

Database System Concepts and Architecture

Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides

some level of data abstraction by hiding details of data storage that are

irrelevant to database users.

A data model is a collection of concepts that can be used to describe

the conceptual/logical structure of a database.

The structure of a database means that holds the data’s data types, relationships,

and constraints.

According to C.J. Date (one of the leading database experts), a data model is an

abstract, self-contained, logical definition of the objects, operators, and so forth,

that together constitute the abstract machine with which users interact. The

objects allow us to model the structure of data; the operators allow us to model its

behavior.

Types of Data Models

1. High Level- Conceptual data model.

2. Low Level – Physical data model.

3. Relational or Representational

4. Object-oriented Data Models:

5. Object-Relational Models:

1. High Level-conceptual data model: User level data model is the high level

11

or conceptual model. This provides concepts that are close to the way that

many users perceive data.

2 .Low level-Physical data model: provides concepts that describe the details of

how data is stored in the computer model. Low level data model is only for

Computer specialists not for end-user.

3. Representation data model: It is between High level & Low level data model

Which provides concepts that may be understood by end-user but that are not

too far removed from the way data is organized by within the computer.

The most common data models are

1. Relational Model

The Relational Model uses a collection of tables both data and the relationship

among those data. Each table has multiple columns and each column has a

unique name.

Relational database comprising of two tables.

Advantages

1. The main advantage of this model is its ability to represent data in a

simplified format.

2. The process of manipulating record is simplified with the use of certain

key attributes used to retrieve data.

12

3. Representation of different types of relationship is possible with this model.

2. Network Model

The data in the network model are represented by collection of records and

relationships among data are represented by links, which can be viewed as

pointers.

The records in the database are organized as collection of arbitrary groups.

Advantages:

1. Representation of relationship between entities is implemented using

pointers which allows the representation of arbitrary relationship

2. Unlike the hierarchical model it is easy.

3. Data manipulation can be done easily with this model.

3. Hierarchical Model

A hierarchical data model is a data model which the data is organized into a tree

like structure. The structure allows repeating information using parent/child

relationships: each parent can have many children but each child has one

parent. All attributes of a specific record are listed under an entity type.

13

Advantages:

1. The representation of records is done using an ordered tree, which is

natural method of implementation of one–to-many relationships.

2. Proper ordering of the tree results in easier and faster retrieval of records.

3. Allows the use of virtual records. This result in a stable database

especially when modification of the data base is made.

Data Instances and Schemas

Database Instances

Database change over time as information is inserted and deleted. The

collection of information stored in the database at a particular moment is called

an instance of the database.

Database Schema

The overall design of the database is called the database schema. A schema is

a collection of named objects. Schemas provide a logical classification of objects

in the database. A schema can contain tables, views, triggers, functions,

packages, and other objects.

DBMS Architecture

A commonly used view of data approach is the three-level architecture suggested

by the ANSI/SPARC (American National Standards Institute/Standards Planning

and Requirements Committee). ANSI/SPARC proposed an architectural framework

for databases.

14

The three levels of the architecture are three different views of the data:

External Schema - individual user view

Conceptual Schema- Logical or community user view

Physical Schema -Internal or storage view

The three level database architecture allows a clear separation of the information

meaning (conceptual view) from the external data representation and from the

physical data structure layout. A database system that is able to separate the

three different views of data is likely to be flexible and adaptable.

The External Schema is the view that the individual user of the database has. This

view is often a restricted view of the database and the same database may

provide a number of different views for different classes of users.

The Conceptual schema (sometimes called the logical schema) describes the

stored data in terms of the data model of the DBMS. In a relational DBMS, the

conceptual schema describes all relations that are stored in the database.

It hides physical storage details, concentrating upon describing entities, data

types, relationships, user operations, and constraints.

 The physical schema specifies additional storage details. Essentially, the
physical schema summarizes how the relations described in the conceptual

schema are actually stored on secondary storage devices such as disks and tapes.
It tells us what data is stored in the database and how.

15

Data Independence

Data independence can be defined as the capacity to change the schema at one

level without changing the schema at next higher level.

It also means the internal structure of database should be unaffected by changes

to physical aspects of storage. Because of data independence, the Database

administrator can change the database storage structures without affecting the

users view.

The different levels of data abstraction are:

1. Physical data independence

2. Logical data independence

1. Physical data independence is the capacity to change the internal schema

without changing the conceptual schema(logical).

2. Logical data independence is the capacity to change the conceptual schema

without having to change the external schema(physical).

Database languages and interfaces

A database system provides a data definition language to specify the database

schema and a data manipulation language to express database queries and

updates.

In practice, the data definition and data manipulation languages are not two

separate languages; instead they simply form parts of a single database language,

such as the widely used SQL language.

16

Data Definition Language

Data Definition Language (DDL) statements are used to define the database

structure or schema. Some examples:

o CREATE - to create objects in the database o

ALTER - alters the structure of the database o

DROP - delete objects from the database

o TRUNCATE - remove all records from a table, including all spaces allocated

for the records are removed

For instance, the following statement in the SQL language is used to create the

account table:

create table account

(accountnumber number(10),

balance number(8));

The storage definition language (SDL), is used to specify the internal schema. The

mappings between the two schemas may be specified in either one of these

languages.

The view definition language (VDL), to specify user views and their mappings to

the conceptual schema, but in most DBMSs the DDL is used to define both

conceptual and external schemas.

In addition, it updates a special set of tables called the data dictionary or data

directory.

A data dictionary contains metadata—that is, data about data. The schema of a

table is an example of metadata. A database system consults the data dictionary

before reading or modifying actual data.

Data Manipulation Language

Data manipulation is

• The retrieval of information stored in the database

17

• The insertion of new information into the database

• The deletion of information from the database

• The modification of information stored in the database

Data Manipulation Language (DML) statements are used for managing data within

schema objects. Some examples:

o SELECT - retrieve data from the a database

o INSERT - insert data into a table

o UPDATE - updates existing data within a table

o DELETE - deletes all records from a table

A data-manipulation language (DML) is a language that enables users to access or

manipulate data as organized by the appropriate data model.

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to

get those data, The DML component of the PL/SQL language is procedural.

•Nonprocedural DMLs require a user to specify what data are needed without

specifying how to get those data. The DML component of the SQL language is

nonprocedural.

A query is a statement requesting the retrieval of information. The portion of a

DML that involves information retrieval is called a query language.

The query in the SQL language finds the name of the customer whose customer-id

is 192:

select

customername from

customer

where customerid = 192;

The query specifies that those rows from the table customer where the

customerid is 192 must be retrieved.

18

DBMS Interfaces

User-friendly interfaces provided by a DBMS may include the following.

Menu Based Interfaces for Web Clients or Browsing. These interfaces present the

user with lists of options, called menus, that lead the user through the formulation

of a request. Menus do away with the need to memorize the specific commands

and syntax of a query language; rather, the query is composed step by step by

picking options from a menu that is displayed by the system. Pull-down menus are

a very popular technique in Web-based user interfaces. They are also often used

in browsing interfaces, which allow a user to look through the contents of a

database in an exploratory and unstructured manner.

Forms Based Interfaces. A forms-based interface displays a form to each user.

Users can fill out all of the form entries to insert new data, or they fill out only

certain entries, in which case the DBMS will retrieve matching data for the

remaining entries. Forms are usually designed and programmed for naive users

as interfaces to canned transactions.

Graphical User Interfaces. A graphical interface (GUI) typically displays a

schema to the user in diagrammatic form. The user can then specify a query by

manipulating the diagram. In many cases, GUIs utilize both menus and forms.

Most GUIs use a pointing device, such as a mouse, to pick certain parts of the

displayed schema diagram.

Natural Language Interfaces. These interfaces accept requests written in English or

some other language and attempt to "understand" them. A natural language interface

usually has its own "schema," which is similar to the database conceptual

.

schema, as well as a dictionary of important words. The natural language interface

refers to the words in its schema, as well as to the set of standard words in its

dictionary, to interpret the request.

Interfaces for Parametric Users. Parametric users, such as bank tellers, often

have a small set of operations that they must perform repeatedly. Systems

analysts and programmers design implement a special interface for naive users.

Usually, a small set of abbreviated commands is included, with the goal of

19

minimizing the number of keystrokes required for each request.

Interfaces for the DBA. Most database systems contain privileged commands that

can be used only by the DBA's staff. These include commands for creating

accounts, setting system parameters, granting account authorization, changing a

schema, and reorganizing the storage structures of a database.

The Database System Environment

A DBMS is a complex software system. The database and the DBMS catalog are

usually stored on disk. Access to the disk is controlled primarily by the

operating system (OS), which schedules disk read/write. Many DBMSs have

their own buffer management module to schedule disk read/write, because this

has a considerable effect on performance. Reducing disk read/write improves

performance considerably. A higher-level stored data manager module of the

DBMS controls access to DBMS information that is stored on disk, whether it is

part of the database or the catalog.

the top part of Figure, It shows interfaces for the DBA staff, casual users who

work with interactive interfaces to formulate queries, application programmers

who create programs using some host programming languages, and parametric

users who do data entry work by supplying parameters to predefined transactions.

The DBA staff works on defining the database and tuning it by making changes to

its definition using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores

descriptions of the schemas (meta-data) in the DBMS catalog. The catalog

includes information such as the names and sizes of files, names and data types

of data items, storage details of each file, mapping information among schemas,

and constraints.

Casual users and persons with occasional need for information from the database

interact using some form of interface, which we call the interactive query

20

interface. These queries are parsed and validated for correctness of the query

syntax, the names of files and a query compiler that compiles them into an

internal form. This internal query is subjected to query optimization, the query

optimizer is concerned with the rearrangement and possible reordering of

operations, elimination of redundancies, and use of correct algorithms and

indexes during execution.

The precompiler extracts DML commands from an application program written

in a host programming language. These commands are sent to the DML compiler

for compilation into object code for database access. The rest of the program is

sent to the host language compiler. The object codes for the DML commands and

the rest of the program are linked, forming a canned transaction whose

executable code includes calls to the runtime database processor.

It is now common to have the client program that accesses the DBMS running

on a separate computer from the computer on which the database resides. The

former is called the client computer running a DBMS client software and the

latter is called the database server. In some cases, the client accesses a middle

computer, called the application server, which in turn accesses the database

server.

21

Database System Utilities

In addition to possessing the software modules just described, most DBMSs have

database utilities that help the DBA manage the database system. Common

utilities have the following types of functions:

Loading. A loading utility is used to load existing data files—such as text

files or sequential files—into the database. Usually, the current (source) format of

the data file and the desired (target) database file structure are specified

to the utility, which then automatically reformats the data and stores it

in the database.

Backup. A backup utility creates a backup copy of the database, usually by

dumping the entire database onto tape or other mass storage medium. The

backup copy can be used to restore the database in case of disk failure.

Database storage reorganization. This utility can be used to reorganize a set

of database files into different file organizations, and create new access paths to

improve performance.

Performance monitoring. Such a utility monitors database usage and provides

statistics to the DBA. The DBA uses the statistics in making decisions

such as whether or not to reorganize files or whether to add or drop indexes

to improve performance.

Other utilities may be available for sorting files, handling data compression,

monitoring access by users, interfacing with the network, and performing other

functions.

Centralized and Client/Server Architectures for DBMSs

Centralized DBMSs Architecture

Architectures for DBMSs have followed trends similar to those for general

computer system architectures. Earlier architectures used mainframe computers

to provide the main processing for all system functions, including user application

programs and user interface programs, as well as all the DBMS functionality. The

reason was that most users accessed such systems via computer terminals that

22

did not have processing power and only provided display capabilities. Therefore,

all processing was performed remotely on the computer system, and only display

information and controls were sent from the computer to the display terminals,

which were connected to the central computer via various types of

communications networks.

As prices of hardware declined, most users replaced their terminals with PCs

and workstations. At first, database systems used these computers similarly to

how they had used display terminals, so that the DBMS itself was still a

centralized DBMS in which all the DBMS functionality,application program

execution, and user interface processing were carried out on one machine.

The Figure illustrates the physical

components in a centralized

architecture. Gradually, DBMS

systems started to exploit the

available processing power at

the user side, which led to

client/server DBMS

architectures.

Client/Server Architectures for DBMSs

Database architecture essentially describes the location of all the pieces of

information that make up the database application.

Database architecture is logically divided into two types.

a) Logical two-tier Client / Server architecture

b) Logical three-tier Client / Server architecture

Two-tier Client / Server Architecture

23

Two-tier Client / Server architecture is used for User Interface program and

Application Programs that runs on client side. An interface called ODBC(Open

Database Connectivity) provides an API that allow client side program to call the

dbms. Most DBMS vendors provide ODBC drivers. A client program may connect to

several DBMS's. In this architecture some variation of client is also possible for

example in some DBMS's more functionality is transferred to the client including

data dictionary, optimization etc. Such clients are called Data server.

Three-tier Client / Server Architecture

Three-tier Client / Server database architecture is commonly used architecture

for web applications. Intermediate layer called Application server or Web Server

stores the web connectivity software and the business logic(constraints) part of

application used to access the right amount of data from the database server.

This layer acts like medium for sending partially processed data between the

database server and the client.

24

Differentiate between centralized and distributed data base

Centralized Distributed

Database is maintained at one site Database is maintained at a number of

 different sites

If centralized system fails, entire system If one system fails, system continues

is halted. work with other sites

Less reliable More reliable

Classification of Database Management Systems

Several criteria are normally used to classify DBMSs. The first is the data model

on which the DBMS is based. The main data model used in many current

commercial DBMSs is the relational data model. The object data model has

been implemented in some commercial systems but has not had widespread use.

Many legacy applications still run on database systems based on the hierarchical

and network data models.

The second criterion used to classify DBMSs is the number of users supported

by the system. Single-user systems support only one user at a time and are

mostly used with PCs. Multiuser systems, which include the majority of DBMSs,

support concurrent multiple users.

The third criterion is the number of sites over which the database is distributed.

A DBMS is centralized if the data is stored at a single computer site. A

centralized DBMS can support multiple users, but the DBMS and the database

reside totally at a single computer site. A distributed DBMS (DDBMS) can have

the actual database and DBMS software distributed over many sites, connected by

a computer network. Homogeneous DDBMSs use the same DBMS software at all

25

the sites, whereas heterogeneous DDBMSs can use different DBMS software at

each site.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs based

on cost. Today we have open source (free) DBMS products like MySQL and

PostgreSQL that are supported by third-party vendors with additional services.

The main RDBMS products are available as free examination 30-day copy versions

as well as personal versions,

We can also classify a DBMS on the basis of the types of access path options for

storing files. One well-known family of DBMSs is based on inverted file structures.

Finally, a DBMS can be general purpose or special purpose. When performance

is a primary consideration, a special-purpose DBMS can be designed and built for

a specific application; such a system cannot be used for other applications without

major changes. Many airline reservations and telephone directory systems

developed in the past are special-purpose DBMSs. These fall into the category

of online transaction processing (OLTP) systems, which must support a

large number of concurrent transactions without imposing excessive delays.

