
Chapter - 4

Deadlocks

Important Questions

1

1.What do you mean by Deadlocks ?

• A process request for some resources. If the
resources are not available at that time , the
process enters a waiting state . The resources
was held by other processes .The waiting
process may never able to get the resource.

This situation is called deadlock.

2

2 . What are the necessary conditions for

deadlocks?

• Mutual exclusion: only one process at a time
can use a resource. If another process
requests the same resource, the requesting
process must wait until the resource is
released.

• Hold and wait: Processes currently holding
resources granted earlier , can request for new
resources , that are currently held by other.

3

• No preemption: a resource can be released by the
process holding it only after that process has competed
its task.

• Circular wait: The circular chain of two or more
processes must exist such that each of them is waiting
for a resource held by next member.

There exists a set {P0, P1, …, Pn} of waiting processes
such that P0 is waiting for a resource that is held by P1, P1

is waiting for a resource that is held by P2, …, Pn–1 is
waiting for a resource that is held by Pn, and Pn is waiting
for a resource that is held by P0.

4

Circular wait

5

3. Explain the Resource allocation
graph in detail.

• A set of vertices V and a set of edges E.

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi  Rj

• assignment edge – directed edge Rj  Pi

6

Resource allocation graph

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi

7

Example for Resource allocation graph

8

Resource allocation graph with
deadlock

9

Graph With A Cycle

10

Basic Facts

• If graph contains no cycles  no deadlock

• If graph contains a cycle 

– if only one instance per resource type, then
deadlock

– if several instances per resource type, possibility
of deadlock

11

4. Explain the concept of Deadlock
prevention in detail

• Mutual exclusion

• Hold and wait

• No pre-emption

• Circular wait

12

Mutual Exclusion

Not always possible to prevent deadlock by preventing
mutual exclusion (making all resources shareable) as certain
resources are cannot be shared safely.
Hold and Wait

A process can get all required resources before it start
execution. This will avoid deadlock, but will result in reduced
throughputs as resources are held by processes even when they
are not needed. They could have been used by other processes
during this time.

Second approach is to request for a resource only when it
is not holding any other resource.

13

• No preemption
We will see two approaches here. If a process request

for a resource which is held by another process, then the
resource may be preempted from the other process. In the
second approach, if a process request for a resource which are
not readily available, all other resources that it holds are
preempted.
Circular wait
• To avoid circular wait, resources may be ordered and we

can ensure that each process can request resources only in
an increasing order of these numbers. The algorithm may
itself increase complexity and may also lead to poor
resource utilization.

14

5. Explain Banker’s Algorithm in detail

• Multiple instances

• When a process requests a resource it may
have to wait

• When a process gets all its resources it must
return them in a finite amount of time

15

• Banker’s algorithm is a resource allocation and
deadlock avoidance algorithm developed by
Edsger Dijkstra that is applicable to resource
allocation systems with multiple instances of
each resource type.

• The Bankers algorithm is run by operating system
whenever a process requests resources. The
algorithm must determine whether allocation of
these resources will put the system in a safe
state. If true , the resources will be allocated.
Otherwise ,the process must wait until some
other process runs to completion and releases
enough resources

16

Data Structures for the Banker’s Algorithm

• Let n = number of processes, and m = number of resources types.
• Available: Vector of length m. If available [j] = k, there are k

instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at
most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

17

Safety Algorithm

Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe
state

18

Resource-Request Algorithm for
Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3. Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is
restored

19

Example of Banker’s Algorithm

• 5 processes P0 through P4;
3 resource types:

A (10 instances), B (5instances), and C (7 instances)
• Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

20

• The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

21

6. Explain the Deadlock detection algorithm for single

and multiple instance type

Single Instance of Each Resource Type

• Maintain wait-for graph

– Nodes are processes

– Pi  Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches
for a cycle in the graph. If there is a cycle,
there exists a deadlock

22

Resource-Allocation Graph and Wait-
for Graph

23

Several Instances of a Resource Type

• Available: A vector of length m indicates the
number of available resources of each type

• Allocation: An n x m matrix defines the
number of resources of each type currently
allocated to each process

• Request: An n x m matrix indicates the
current request of each process. If Request
[i][j] = k, then process Pi is requesting k more
instances of resource type Rj.

24

Detection algorithm

1)Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available
(b)For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a)Finish[i] == false
(b)Requesti Work

If no such i exists, go to step 4

25

Work = Work + Allocationi

Finish[i] = true
go to step 2

4.If Finish[i] == false, for some i, 1  i  n, then
the system is in deadlock state.

26

7. Explain the concept of Deadlock
recovery

• Process termination

• Resource pre-emption

• Check point / roll back mechanism

27

Process termination

• Abort all deadlocked process

• Successively abort each deadlocked process
until the deadlock no longer exists.

28

Resource pre-emption

Roll back

A process that has a resource pre-empted from
it must be roll back to the point to its acquiring
of that resource.

Total roll back – Abort the process and restart it.

29

Check point

• Keep checkpointing periodically

• When a deadlock is detected , see which
resource is needed

• Take away the resource from the process
currently having it

• Restart the process from the checkpointed
state.

30

8.What is safe state?

• Safe State

– state is safe if the system can allocate resources to
each process (up to its maximum) in some order
and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe
sequence.

31

