
Conditional Control Structures

Dr.T.Logeswari

2

TEST COMMAND

 test expression Syntax
Or
 [expression]

Ex: a=5; b=10

test $a –eq $b ; echo $?

[$a –eq $b] ; echo $?

2Unix Shell Programming - Forouzan

3

TEST COMMAND

Numeric test
String test

3Unix Shell Programming - Forouzan

4

NUMERIC COMPARISON

OPERATORS MEANING USAGE

-eq Equal to if [5 –eq 6]

-ne Not equal to if [5 –ne 6]

-lt Less than if [5 –lt 6]
-le Less than or equal to if [5 –le 6]

-gt Greater than if [5 –gt 6]

-ge Greater than or equal to if [5 –ge 6]

Output: True : $?=0; False : $?=1
4Unix Shell Programming - Forouzan

5

STRING COMPARISON

OPERATORS MEANING

str1 = str2 str1 is equal to str2

str1 != str2 str1 is not equal to str2

str1 str1 is not null or not defined

-n str1 str1 is not null and exists

-z str1 str1 is null and exists

5Unix Shell Programming - Forouzan

6

STRING COMPARISON

= sign must be preceded and followed by at
least one blank space

 If string contains more than one word separated
by white space, then they must be enclosed in
double quotes

Ex: str1=“New Horizon College”

While comparing such strings they must be
enclosed in quotes

Ex: [“str1” = “str2”]
6Unix Shell Programming - Forouzan

7

Exit command

Terminates the execution of shell scripts

If program is executed successfully, it
returns non-zero; otherwise zero value is
returned

$? : variable that stores the status of
exited command

7

7Unix Shell Programming - Forouzan

Introduction

• Conditional control structure are also
known as branching control structure
or selection structures

• Decision making can be carried out
by using branching control structure
or selection structures

Branching Control structures

• If then fi statement
• If then else fi statement
• If then elif else fi statement
• Case easc statement

10

If then fi statement
if conditional expression
then

true block
fi

• statements are executed only if command succeeds,
i.e. has return status “0”

$?= 0, if true
$?=1, if false

10

Find largest of two numbers

Clear
echo “ enter two number”
Read a b
large=$a
If [$b –gt $large]; then
Large=$b
fi

12

If then else fi statement

if conditional expression
then

true block
else

false block
fi

12

Leap year or not
echo enter a year
read year
x=`expr $year % 4`
If [$x –eq 0]
Then
echo $year is a leap year
else
echo $year is not leap year
fi

Odd or Even
clear
echo enter a number
read n
if [expr $num % 2` -eq 0]
then
echo n is a even number
else
echo n is not a even number
fi

What is wrong with this interactive
shell script?

echo What month is this?
read $month
echo $month is as good a month as any.

• In a file word UNIX is appearing many times?
How will you count number?

grep -c "Unix" filename

Write a script that will show the following as
output:
Give me a U!
U!
Give ma a N!
N!
Give me a I!
I!
Give me a X!
X!

for i in U N I X

• echo Give me a $i!
• echo $i!
• done

Write a script that prints out date information
in this order: time, day of week, day number,
month, year(sample output: 17:34:51 PDT
Sun 12 Feb 2012)

Sat march 15 14 : 35 :30 IST 2018

Sat march 15 14 : 35 :30 IST 2018
• set ‘date’
• echo $4 $5 $1 $3 $2 $6

22

if then elif else fi statement

if [condition1]; then
statement1

elif [condition2]; then
statement2

elif [condition3]; then
statement3

else
default_statement

fi

• The word elif stands for “else if”
• It is part of the if statement and cannot be used by

itself
22

Find whether a number is positive,
negative or zero

echo enter a number
Read num
if [$num –gt 0]; then
echo $num is positive
elif [$num –lt 0]; then
echo $num is negative
elif [$num –eq 0]; then
echo $num is zero
else
echo kindly enter a valid input
fi

24

case esac statement
• Used for a decision that is based on multiple choices

• Syntax:
case value in

pattern1) command-list1
;;
pattern2) command-list2
;;
patternN) command-listN
;;
*) default-list
;;

esac

24

• The value is compared against the patterns
until a match is found

• The case statement starts with the keywords
case and ends with the keyword easc

• Block of commands attached to every pattern
must be terminated with double semicolon(;;)
but not compulsory with default pattern

• The default *) pattern gets executed when no
match is found

• Case patterns (label) can be in any order

Unix commands using case
statement

1) display list of files
2) display todays date
3) display calendar
4) display logged user
5) display current directory
6) quit

echo menu
echo 1.list of files
echo 2.todays date
echo 3.display month of

calender
echo 4.logged user
echo 5.display current

directory
echo 6.quit
echo"enter the choice"
read ch

case $ch in
1) ls
;;
2) date
;;
3)cal
;;
4) who
;;
5)pwd
;;
6) exit
;;
*) echo invalid choice
;;
esac
•

Looping control structures

• Loops are required whenever a set of
statement must be executed repeatedly

• The repeated execution also need decision
making to terminate the loop

• The three types of looping are
– while loop
– for loop
– until loop

28

while loop
To execute commands in “command-list” as long as
“expression” evaluates to true

Syntax:
while [expression]
do

command-list
done

28

Sum of digits
clear
sum=0
echo "enter a number"
read num
n=$sum
while [$num -gt 0]
do
rem=`expr $num % 10`
sum=`expr $sum + $rem`
num=`expr $num / 10`
done
echo the sum of digit of $n is $sum

30

EXAMPLE: Using while loop

COUNTER=0
while [$COUNTER -lt 10]
do

echo $COUNTER
let COUNTER + =1

done

30

31

UNTIL LOOP
• Purpose:

To execute commands in “command-list” as long as
“expression” evaluates to false

Syntax:
until [expression]
do

command-list
done

31

32

EXAMPLE: USING THE UNTIL LOOP
#!/bin/bash

COUNTER=20
until [$COUNTER -lt 10]
do

echo $COUNTER
let COUNTER - =1

done

32

33

THE FOR LOOP
• Purpose:

To execute commands as many times as the number of
words in the “argument-list”

Syntax:
for variable in argument-list
do

commands
done

33

34

EXAMPLE 1: THE FOR LOOP
#!/bin/bash

for i in 7 9 2 3 4 5
do

echo $i
done

34

Jumping control structures

• Break
– The break statement is used to exit from a loop

structure based on certain condition
– The break statement cannot exit from nested

loops, it can exit only from the loop containing it
– Syntax:

break

• Continue
– The continue statement is used to skip the rest of

the statement in a loop and the execution
proceeds directly to the next iteration of the loop

– Syntax
continue

• exit
– The exit statement is used to terminate a program
– Syntax

exit

	Conditional Control Structures
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Introduction
	Branching Control structures
	Slide Number 10
	Find largest of two numbers
	Slide Number 12
	Leap year or not
	Odd or Even
	�What is wrong with this interactive shell script?�
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Find whether a number is positive, negative or zero
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Looping control structures
	Slide Number 28
	Sum of digits
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Jumping control structures
	Slide Number 36

