
UNIT – III
SHELL PROGRAMMING

Dr.T.Logeswari

1Unix Shell Programming - Forouzan

2

Shell

 Interface between user and the kernel

Prompt for executing Unix program is called
shell prompt ($, %, #)

2Unix Shell Programming - Forouzan

3

Types of Shells

1. Bourne shell (sh) : $
2. C shell (csh) : %
3. Korn shell (ksh) : $
4. Bourne-Again shell (bash) : $

 # indicates any shell

3Unix Shell Programming - Forouzan

4

Bourne shell

Symbol : $
Executable filename is sh
Default shell for Unix
Developed by Stephen Bourne

4Unix Shell Programming - Forouzan

5

C shell

 Symbol : %
Executable filename is csh
 Similar to C program
Developed by Bill Joy

Advantage over Bourne Shell
 C shell can execute processes in background

TC shell (tcsh) : Free version of C shell under Linux

5Unix Shell Programming - Forouzan

6

Korn shell

Symbol : $
Executable filename is ksh
Developed by David Korn

Korn shell = Bourne shell + C shell

6Unix Shell Programming - Forouzan

7

Bourne-Again shell

Symbol : $
Executable filename is bash
Developed by Fox and C Ramey

Bash is a freeware shell
Default for Linux

7Unix Shell Programming - Forouzan

8

Shell as command line processor : Steps

1. First it parses the command line, identifies and
removes extra spaces, tabs etc

2. Evaluates variables prefixed with $ sign
3. Executes commands with back quotes
4. Redirection is checked if any and connects the

concerned files
5. Substitutes meta-characters like *
6. Looks for required files and commands, retrieves

them and transfers them to the kernel for execution
7. PATH variable helps to find the path for the

commands
8. Semicolon involves multiple commands
9. Logical operators are evaluated 8Unix Shell Programming - Forouzan

9

Editors

Software package used to enter
and execute any program

Unix editors : Vi, Vim, emacs, pico

9Unix Shell Programming - Forouzan

10

Editor

1. ed:

 First editor on Unix
 Developed by Ken Thompson

2. ex:

 Extended editor
 Developed by Bill Joy

3. vi:

 Visual editor
 Screen-oriented version of ex

4. vim:

 Vi Improved
 Improved version of vi

10Unix Shell Programming - Forouzan

11

Modes of vi editor
1. Command mode

 Here every character typed is a command
 <Esc> : used to return to command mode

2. Insert mode

 Every character typed is added to the text in the file
 Insert or i
 <Esc> : used to exit insert mode

3. Ex mode

 Last-line command
 Makes user to enter commands at the bottom of vi screen
 Colon (:) is used to enter ex mode

11Unix Shell Programming - Forouzan

12

Invoking vi

 vi filename. extension
 Filename occurs at the bottom of screen

Options:
 vi filename : edits filename starting at

line 1
 vi –r filename : recovers filename that

was being edited when system crashed
 vi +n filename : edits filename and

places cursor at line n 12Unix Shell Programming - Forouzan

13

Quiting vi

 While quiting vi, new or modified file is automatically
saved

 Options:
 :x / :wq / :q - quits vi ,writing modified file
 :w – writes modified file and remains in

command mode
 :q! – quits vi, without saving the latest

changes
 ZZ – saves and exits; this is known as last

command
13Unix Shell Programming - Forouzan

14

Moving the cursor

Mouse does not work in Unix
Arrows and keys has to be used

Options:
h : moves cursor left one character
 l : moves cursor right one character
 j : moves cursor down one line
 k : moves cursor up one line

14Unix Shell Programming - Forouzan

15

Arrow keys

 Slow on lengthy files
 But sometimes they produce strange effects
 Options:
 0(zero) – moves cursor to start of current line
 $ - moves cursor to end of current line
 W - moves cursor to beginning of next

word
 b - moves cursor to beginning of

preceding word
 :0 or 1G - moves cursor to first line in file
 :n or nG - moves cursor to line n
 :$ or G - moves cursor to last line in file 15Unix Shell Programming - Forouzan

16

Screen manipulation

Caps lock (^) before a letter indicates ctrl
key

Options:
 ^f : moves forward one full screen
 ^b : moves backward one full screen
 ^d : moves forward one half screen
 ^u : moves backward one half screen

16Unix Shell Programming - Forouzan

17

Undo and Redo

u : undo , single toggle
Ctrl r : redo

17Unix Shell Programming - Forouzan

18

Inserting text

Options:
 i : inserts text before cursor until you

press <Esc>
 a : inserts text after cursor until you

press <Esc>
 o : opens and puts text in a new line

below current line, until you press <Esc>
 O : opens and puts text in a new line

above current line, until you press <Esc>
18Unix Shell Programming - Forouzan

19

Changing text

Options:
 r : replaces single character under

cursor
R : replaces characters, starting with

current position, until you press
<Esc>

19Unix Shell Programming - Forouzan

20

Deleting text

Options:
x : deletes single character

under cursor
dd : deletes entire current

line

20Unix Shell Programming - Forouzan

21

Cutting and pasting text

Options:
yy : copies current line into

buffer
p : puts or pastes the line in the

buffer into the text after current
line

21Unix Shell Programming - Forouzan

22

Saving and reading files
 Options:

 : r filename – reads file named
‘filename’ and inserts after current line

 :w – writes current contents to a file
 :w newfile - writes current contents to a

new file named ‘newname’
 :w! prevfile - writes current contents

over a pre-existing file named ‘prevfile’

22Unix Shell Programming - Forouzan

23

Searching text
 Options:

 /string : searches forward for occurrence of
string in text

 ?string : searches backward for occurrence of
string in text

 n : moves to next occurrence of searched
string

 N : moves to next occurrence of searched
string in opposite direction

23Unix Shell Programming - Forouzan

24

Regular expressions

 . (dot) – any single character except newline
* - zero or more occurrence of any character

 [….] – any single character specified in the set
 [!.] - any single character not specified in the set

^ - beginning of line
$ - end of line

24Unix Shell Programming - Forouzan

25

[….] – Set examples

[A_Z]
[a-z]
[0-9]
[0-9 A-Z]
[A-Z][a-zA-Z][0-9]

25Unix Shell Programming - Forouzan

26

Regular expression examples

/Hello/
/^[a-zA-Z]/
/^[a-z]*/
/2134$/
/[0-9]*/
/^[!#]/
/^TEST$/

26Unix Shell Programming - Forouzan

27

Determining line numbers
 Options:

 :.= - returns line number of current line
at the bottom of screen

 := - returns total number of lines at the
bottom of screen

 ^g - provides current line number with
the total number of lines, in the file at
the bottom of screen
Ex: “hello” Line 3 of 6 – 50% -- Col 1

27Unix Shell Programming - Forouzan

28

Vi settings

 Options here are default
 :set option – turn on
 :set nooption – turn off

 Options:

 :set ai – turns on auto indentation
 :set all – prints all options to the screen
 :set eb – precedes error messages with bell
 :set nu – shows line numbers
 :set prompt – prompts for command input with :
 :set showmode – indicates input or replace mode at

bottom
28Unix Shell Programming - Forouzan

29

Shell variables

They have the ability to store and
manipulate information within a shell
program
Rules for naming variables:

 Can contain alphanumeric character and underscore(_)
 Must start with alphabet or underscore
 Case sensitive
 No limit on length of variable name
 Ex: No_of_std, NAME

29Unix Shell Programming - Forouzan

30

Types of shell variables

System variables
Local or user defined variables
Read-only variables

30Unix Shell Programming - Forouzan

31

System variables
Also known as environment variables
Set either during booting or after logging in
Written in uppercase only

Ex: PATH, HOME, IFS, SHELL, LOGNAME,
OSTYPE, PS1,PS2

31Unix Shell Programming - Forouzan

32

System variables

PATH : list of directories separated by colon(:)
HOME : path of home directory
SHELL : absolute pathname of user’s shell

program
LOGNAME : stores user name
OSTYPE : type of OS
PS1 : holds primary prompt value ($)
PS2 :holds secondary prompt value (>)

32Unix Shell Programming - Forouzan

33

IFS :
 Internal Field Separator
 Holds token used to separate a string into

sub-strings
 3 default tokens : space, tab, newline
 od : used to display non-printable characters
 -b : displays octal value
 -c : displays character itself

 Ex: $echo $IFS | od –bc
011 012 012
\t \n \n

33Unix Shell Programming - Forouzan

34

User-defined variables

Variables are defined and used by users
Exist only during execution of shell

program
Local to the user’s shell
Not accessible to other users
Ex: read x, y, z

x=10
y=20
z=30

34Unix Shell Programming - Forouzan

35

Read-only variables

 Values are fixed
 ‘readonly’ function is used to convert any variable to

read-only variable

 Ex: echo Enter a number :
read n # Enter a number : 5
echo N=$n # N=5
readonly n
n=n+10
echo N=$n #N=5

35Unix Shell Programming - Forouzan

36

Defining and evaluating shell variable(Storing)

Assignment statement i.e., equal to (=) operator
without space on either side of it

Syntax : variable=value
Ex: no=10

 ‘$’ is used to display variable values
Ex: echo $no # display value 10

To define NULL values
Ex: num=“ ” or num=

36Unix Shell Programming - Forouzan

37

Data type of shell variables

All shell variables are string type
Content are stored in ASCII format
By default, shell variables are

initialized to null string; hence it is
not required to declare or initialize
them
Ex:

Num=10
echo $Num 37Unix Shell Programming - Forouzan

38

Script

A script is a file that contains set of
shell commands

38

38Unix Shell Programming - Forouzan

39

FEATURES OF SHELL SCRIPT
 It is a complete programming language
 It consists of sequence of commands for selective

execution, I/O operations and looping
 It runs in an interpretive mode, executing one

statement at a time
They are named just like any other files
When a shell script is created for the first time, it

will have only read and write permissions.
Execution permission must be granted

39

39Unix Shell Programming - Forouzan

40

EXECUTING SHELL SCRIPT

2 ways:
1. sh filename.sh
2. chmod +x filename.sh

./ filename.sh

Eg $ chmod u +x prog1.sh
$./prog1/.sh

welcome
40

40Unix Shell Programming - Forouzan

41

COMMENTS

Comments are non-executable statements
They explain the purpose of the program, login and

complex commands used
Comments are written by using ‘ # ‘ character as the

first character

Ex: #program to display date
date # shows current date

41

41Unix Shell Programming - Forouzan

42

KEYWORDS

Words with predefined meaning
They cannot be used as ordinary shell

variables

Ex: echo, read, while, if, for, case, break

42

42Unix Shell Programming - Forouzan

43

USER INPUT STATEMENT (Read Command)

Shell allows to prompt for user input
 read statement is used to get input from user and

store data into a variable
Syntax:

read varname1, varname2…..

43

43Unix Shell Programming - Forouzan

44

USER INPUT EXAMPLE

echo “Enter 3 numbers”
read a b c
echo “Entered numbers are $a $b $c”

read -p "enter your name: " first last
echo "First name: $first"
echo "Last name: $last"

44

44Unix Shell Programming - Forouzan

45

SHELL ARITHMETIC USING expr

All variables in Unix are string variables
expr command is used to convert string

variables to numeric format

Arithmetic operators:
 +, -, *, /, %

bc is used for floating point calculations

45Unix Shell Programming - Forouzan

46

EXAMPLES

 a=5 ; b=10
 expr $a + $b
 expr $a - $b
 expr $a * $b
 expr $a / $b
 expr $a % $b

46Unix Shell Programming - Forouzan

47

EXAMPLES

expr is used with command
substitution using back quotes (` `)
to assign values to variables

a=5; b=10
a=`expr $a + 1` or a=$(expr $a + 1)
echo $a

47Unix Shell Programming - Forouzan

48

RULES FOR ARITHMETIC OPERATIONS

Multiple assignments can be done in a single
line
Ex: a=5 ; b=10

Operators in expr command must be followed
and preceded by at least one blank space

$ expr $a + $b + $c
Hierarchy of operators:
 1: / * %
 2 : + -

48Unix Shell Programming - Forouzan

49

BASIC CALCULATOR (bc)

 For real arithmetic's, basic calculator (bc) is used
Output of arithmetic calculation are piped to bc
 Scale function is used to set number of decimal

places after decimal point

Ex: a=5.5; b=10.5
scale=2
c=`echo $a + $b | bc`
d=`echo $a * $b | bc`
echo $c $d

49Unix Shell Programming - Forouzan

50

COMMAND SUBSTITUTION

 Two commands can be connected either by using
pipeline or by command substitution

 Back quote (` `) works only within double quotes and
doesn’t work within single quotes

 echo “ Current date is `date` ”
 Current date is Tuesday Feb 18 11:55:59 IST

2014
 echo ‘ Current date is `date` ’
 Current date is `date`

50Unix Shell Programming - Forouzan

51

ESCAPE SEQUENCE
 Two character String beginning with \

(backslash)
 \c : places cursor in the same line that displays

the output

Ex: echo “Enter name: \c “
 Enter name: $_

 \t : tab of 8 character position
 \n : newline character equivalent to pressing

ENTER
51Unix Shell Programming - Forouzan

Positional Parameter

• Information can be conveyed to a shell
script through command line argument
or shell script arguments

• These argument submitted with a shell
script are known as positional
parameters

• Bourne shell stores the first nine
command line arguments in the variable
$1, $2….$9

53

POSITIONAL PARAMETERS

53

Command line arguments submitted with
a shell script

Positional parameters automatically store
values of command line arguments

set command is used to assign values

53Unix Shell Programming - Forouzan

54

POSITIONAL PARAMETERS

54

Parameter Meaning
$0 Name of the current shell script

$1-$9 Positional parameters 1 through 9

$# The number of positional parameters

$* All positional parameters, “$*” is one string

$@ All positional parameters, “$@” is a set of strings

$? Return status of most recently executed command

$$ Process id of current process

54Unix Shell Programming - Forouzan

55

EXAMPLES:
$ set tim bill ann fred

$1 $2 $3 $4

$ echo $*

tim bill ann fred

$ echo $#

4

$ echo $1

tim

$ echo $3 $4

ann fred

55

The ‘set’ command
can be used to assign
values to positional

parameters

55Unix Shell Programming - Forouzan

56

EXAMPLES:
$ set `date`

Tuesday Feb 18 11:55:59 IST 2014
$1 $2 $3 $4 $5 $6

$ echo $*
Tuesday Feb 18 11:55:59 IST 2014

$ echo $# : 6

$ echo $1 : Tuesday

$ echo $4 : 11:55:59

56

56Unix Shell Programming - Forouzan

57

Exit command

Terminates the execution of shell scripts

If program is executed successfully, it
returns non-zero; otherwise zero value is
returned

$? : variable that stores the status of
exited command

57

57Unix Shell Programming - Forouzan

58

TEST COMMAND

 test expression
Or
 [expression]

Ex: a=5; b=10

test $a –eq $b ; echo $?

[$a –eq $b] ; echo $?

58Unix Shell Programming - Forouzan

59

TEST COMMAND

3 types:

Numeric test
String test
File test

59Unix Shell Programming - Forouzan

60

NUMERIC COMPARISON

OPERATORS MEANING USAGE

-eq Equal to if [5 –eq 6]

-ne Not equal to if [5 –ne 6]

-lt Less than if [5 –lt 6]
-le Less than or equal to if [5 –le 6]

-gt Greater than if [5 –gt 6]

-ge Greater than or equal to if [5 –ge 6]

Output: True : $?=0; False : $?=1
60Unix Shell Programming - Forouzan

61

STRING COMPARISON

OPERATORS MEANING

str1 = str2 str1 is equal to str2

str1 != str2 str1 is not equal to str2

str1 str1 is not null or not defined

-n str1 str1 is not null and exists

-z str1 str1 is null and exists

61Unix Shell Programming - Forouzan

62

STRING COMPARISON

= sign must be preceded and followed by at
least one blank space

 If string contains more than one word separated
by white space, then they must be enclosed in
double quotes

Ex: str1=“New Horizon College”

While comparing such strings they must be
enclosed in quotes

Ex: [“str1” = “str2”]
62Unix Shell Programming - Forouzan

63

FILE COMPARISON

TEST MEANING

-e file True if file exists

-f file True if file exists and a regular file

-r file True if file exists and is read-only

-w file True if file exists and is writable

-x file True if file exists and is executable

-s file True if file exists and is non-empty
-d file True if file exists and is a directory

63Unix Shell Programming - Forouzan

64

LOGICAL OPERATORS

OPERATORS TYPE

! expression Logical NOT

expression1 –a expression2 Logical AND

expression1 –o expression2 Logical OR

64Unix Shell Programming - Forouzan

65

HIERARCHY OF OPERATORS

OPERATORS TYPE

! Logical NOT

-lt, -gt, -le, -ge, -eq, -
ne

Relational

-a Logical AND

-o Logical OR

65Unix Shell Programming - Forouzan

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Positional Parameter
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65

