
BCA: II SEM:IV
UNIX SHELL PRGRAMMING

Dr.T.LOGESWARI

DEPT OF COMPUTER SCIENCE

NEW HORIZON COLLEGE

1Unix Shell Programming - Forouzan

Unix Programming

Unit –I :- Introduction

2Unix Shell Programming - Forouzan

• UNIX is a computer Operating System which is

capable of handling activities from multiple users at

the same time. Unix was originated around in 1969 at

AT&T Bell Labs by Ken Thompson and Dennis

Ritchie.

3Unix Shell Programming - Forouzan

What is Unix ?

• The UNIX operating system is a set of programs that act as a

link between the computer and the user.

• The computer programs that allocate the system resources and

coordinate all the details of the computer's internals is called

the operating system or kernel.

• Users communicate with the kernel through a program known

as the shell.

• The shell is a command line interpreter; it translates

commands entered by the user and converts them into a

language that is understood by the kernel.

4Unix Shell Programming - Forouzan

Feature of Unix

5Unix Shell Programming - Forouzan

Feature of Unix

• Unix is a computer operating system. The salient feature of
Unix Operating system are as follows

– Multi User

– Multi Tasking

– Portability

– Communication

– Security

– Machine Independent

6Unix Shell Programming - Forouzan

• Multi User
– It is a multi user operating system

– It support multiple user at time(it share the resource like printer,
hard disk etc)

– The main computer is connected to a number of terminals, which
in turn consist of a keyboard and monitor

– There are several types of terminals can be connected to the
server. They are

• Dumb Terminals (consist of keyboard & monitor do not
have hard disk or memory

• Terminals Emulator(consist of own memory, MP and disk
drive it transmit its job to server for processing)

• Dial in terminals (Connect to server through telephone
lines

7Unix Shell Programming - Forouzan

• Multi tasking
– This feature enables Unix Os to support concurrent execution of

multiple processes

– Each command takes small fraction of times to process.

• Portability
– The Unix operating system is highly portable
– It can easily be implemented on different hardware platform

with little or no modification

• Communication
– It is highly effective in Unix
– Communication can be established between user working on

different terminals connected to the same or different machine

8Unix Shell Programming - Forouzan

• Security

– Unix is a multi user system, so there might be possibility of

intruder

– So unix provide high security

– First at the system start up level it provide login names and

password for user

– Second file protection is provided by granting different

permission to each file. Read = only to read ; write = permission

only to write in a file

– Unix support file encryption(unreadable format)

When required you decrypt

9Unix Shell Programming - Forouzan

• Machine Independent

– It hides the machine architecture from the user. So it is

easier to write a program that run on different hardware

implementation

– Unix Os treats everything including memory and I/O

devices as files

– The Unix file system allows easy and efficient maintenance

of files

10Unix Shell Programming - Forouzan

• Paging

– If the available memory is full. LINUX then look for
4kb pages of memory which can be freed. Pages,
with content already on hard disk are discarded. If
one of the pages is to be accessed, it has to be
reloaded. This procedure is called paging

11Unix Shell Programming - Forouzan

Other features

• Distributed data processing capabilities

• Open Source code

• Shell Scripts

• Powerful Pipes and Filters

• E-Mail Facility

• Support to most programming languages

12Unix Shell Programming - Forouzan

Unix System Architecture / Unix
Component

13Unix Shell Programming - Forouzan

• A Unix operating system consist of three layer

– Hardware

– Kernel mode

– User mode

• the major component of unix system are
• Kernel

• Shell & GUI

• File system

14Unix Shell Programming - Forouzan

15

Block Diagram of System Kernel

System Call Interface

File Subsystem
Inter-process

communication

Scheduler

Memory
management

Process

control

subsystem
Device drivers

hardware control

hardware

Libraries
User Programs

User Level

Kernel
Level

Hardware Level
Unix Shell Programming - Forouzan

16

Architecture of Unix System

hardware

kernel

sh who

date

ed

wc

grep

as

nroff

ld

cc

cpp

emacs

Other apps

• OS interacts directly with
the hardware

• Such OS is called
system kernel

Unix Shell Programming - Forouzan

• The main concept that unites all versions of UNIX is the following

four basics −

• Kernel: The kernel is the heart of the operating system.

• It interacts with hardware and most of the tasks like memory

management, task scheduling and file management.

• It is a collection of program and routine written in C

• When the system is booted the kernel gets loaded into memory

and communicate directly with hardware

17Unix Shell Programming - Forouzan

Function of Kernel

• Three major tasks of kernel:
 Process Management
 Device Management
 File Management

• Three additional Services for Kernel:
 Virtual Memory
 Networking
 Network File Systems

• Experimental Kernel Features:
Multiprocessor support
 Lightweight process (thread) support

18Unix Shell Programming - Forouzan

• Shell: The shell is the utility that processes your requests.

When you type in a command at your terminal, the shell

interprets the command and calls the program that you want.

The shell uses standard syntax for all commands.

• C Shell, Bourne Shell and Korn Shell are most famous shells

which are available with most of the Unix variants.

• The shell invoke a command line prompt which is usaually $

or % where the user can type a unix command

• The bourne shell(sh) is the widely used and popular shell

19Unix Shell Programming - Forouzan

• Commands and Utilities: There are various command and utilities

which you would use in your day to day activities. cp, mv, cat and

grep etc. are few examples of commands and utilities. There are

over 250 standard commands plus numerous others provided

through 3rd party software. All the commands come along with

various optional options.

• Command utilities or system utilities also include server program

called daemons(which provide remote network and administration

services)

• Files and Directories: All data in UNIX is organized into files. All files

are organized into directories. These directories are organized into a

tree-like structure called the file system.

20Unix Shell Programming - Forouzan

• When you work with UNIX, one way or another you spend

most of your time working with files. This would teach you

how to create and remove files, copy and rename them,

create links to them etc.

21Unix Shell Programming - Forouzan

• In UNIX there are three basic types of files −

• Ordinary Files − An ordinary file is a file on the system that contains

data, text, or program instructions.

• Directories − Directories store both special and ordinary files. For

users familiar with Windows or Mac OS, UNIX directories are

equivalent to folders.

• Special Files − Some special files provide access to hardware such as

hard drives, CD-ROM drives, modems, and Ethernet adapters. Other

special files are similar to aliases or shortcuts and enable you to

access a single file using different names.

22Unix Shell Programming - Forouzan

Linux System

• It is a free open source Unix Operating System

• Developed in 1991 by Linux Torvalds

• Open source means source code is freely available so

anyone can add feature and correct bugs

• Features

– It support many programming languages like ada, C, C++.

Java

– It includes Intel C++ Compiler, sun Studio and IBM XL C

C++ Compiler

23Unix Shell Programming - Forouzan

Other Features

• Configurability

• Convenience

• Stability

• Freedom

24Unix Shell Programming - Forouzan

Advantages & Disadvantages

• It is free

• It is portable to any hardware platform

• It is secure and versatile

• It is scalable

More technical ability needed

Not all hardware compatible

25Unix Shell Programming - Forouzan

Unix command format

26Unix Shell Programming - Forouzan

Unix Command format

• A unix command line consist of the name of
the unix command followed by arguments

– The syntax

$command-options target
– Command is the name of built in shell command

– Option is a special argument which should always gives as
minus to differentiate from file name

– Target is a filename or expression

27Unix Shell Programming - Forouzan

• All unix command must written in lower case

• Whenever the option are specified there must be space or tab

between the command name and the option

• A unix command can contain zero, one or more arguments

• A unix command can terminate by delete or Ctrl-u

• When unix command contain more than 80 character and

overflow to next time, it is indicated by special prompt >,

which appear at the beginning of the next line. This special

prompt is known as secondary prompt

28Unix Shell Programming - Forouzan

Types of Unix Command

• External

– It exist independently as a separate file

– The command such as cat or ls is issued

– The shell searches for these command files using a
system variable called PATH variable and execute it

– Most of the unix command are external in nature

29Unix Shell Programming - Forouzan

• Internal

– It does not exist independently

– They are part of another program or routine

– Example echo command

– Internal command are also known as built in
commands

30Unix Shell Programming - Forouzan

Unix Advantages

• It is fully multi tasking with protected memory

• Very efficient virtual memory

• Access control and security (valid account and
password)

• Optimized for program development

• Unix is free software

• Unix is very stable (never crash)

• It can smoothly manage extremely huge amount
of data

31Unix Shell Programming - Forouzan

Unix Drawbacks

• Commands have cryptic names and give very
little response to tell the user what they are
doing

• Much use of special keyboard characters

• Well Understand the main feature of design
feature

• Documentation is short on examples and
tutorials to help how to use.

32Unix Shell Programming - Forouzan

Unix File System

Dr.T.Logeswari

33Unix Shell Programming - Forouzan

• Unix File system is generally divided into four
part

– The Boot Block

– The Super Block

– The inode Table

– The data block
Disk Arrangement

BB SB IL DB

34Unix Shell Programming - Forouzan

• The boot block

– It is located at the beginning of the file system

– It can be accessed by code incorporated by
computer ROM bios

– The boot block is part of disk label

– It contain a program called bootstrap to boot the
OS

35Unix Shell Programming - Forouzan

• The super block

– It contain statistical information to keep track of
the entries in the file system

– Whenever disk manipulation is required the super
block is accessed

– Always the copy kept in RAM

36Unix Shell Programming - Forouzan

The super block contain information

• Size of the file system
– The storage size of the device or current partition

• List of storage blocks
– The storage space is divided into series of

standard size block

– When data moved to or from the file system ie
block

• Number of free block on the file system

• A list of free block with their location

37Unix Shell Programming - Forouzan

• Size of the inode list

– The inode list is initialized to track the maximum
number of files which cannot be more than
maximum number of storage blocks

• Number of free inode on the file system

• A list of free inodes

• Index to next free inode on the list

• Lock fields for free blocks and free inode lists

• Flag to indicate modification of super blocks

38Unix Shell Programming - Forouzan

• The inode table

– Information about each file in the file system is
kept in a special kernel structure called inode

– The inode contain pointer to disk block containing
data in the file

– It contain other information like file size, file
modification time, permission bit owner, group etc

– It does not contain name of file

– The name of file is listed in directory

– The directory contain the file name and their
associated inode

39Unix Shell Programming - Forouzan

• A inode size of 64 bytes for a file contain the
information

– File owner type

• This is number id used as password to find user of the
system

– Group id

• This is group to access the owner file

– File type

• it indicate whether inode represent a file, a directory or
block device

• If the type value is zero then inode is free

40Unix Shell Programming - Forouzan

• File Access Permission

– User access

• Access the file(creator)

– Group Access

• Access the member of specified group

– Other Access

• Rest of the world

• Three types of Access

– Read

– Write

– Execute
41Unix Shell Programming - Forouzan

• Each file contain 9 access permission for read
write and execute

• The format rwx-rwx-rwx

– Date & time of last file access

– Date & time of last modified

• Inode modification time

– Whenever the file is accessed or modified or
when inode is modified, the content of the file
changed – the inode modification time also
change

42Unix Shell Programming - Forouzan

• Number of links

– It gives the number of directory entries
referencing the same inode

• Size of the file

– This gives the size of the file in bytes

• Table of disk address

– The data is stored on the storage device

• The block storing the data file data in which to
retrieve

• Totally there is 13 address or pointer

43Unix Shell Programming - Forouzan

• The first 10 point directly

• If additional storage is required 11th pointer is
used(256 space)

• If additional storage is required 12th pointer is
used(256 *256 space)

• If additional storage is required 13th pointer is
used(256*256*256 space)

44Unix Shell Programming - Forouzan

• The data block

– It contain the actual data in the file or directories

– It follow inode table and occupy most storage
space

– The file allotted for one file cannot allotted for
other file unless the two files are linked

45Unix Shell Programming - Forouzan

• Advantages

– Data in small files can be accessed directly from
inode

– Larger files can be accessed efficiently

– Disk can be filled completely

• Disadvantage

– Inode information kept separately from data often
requires a long seek when file accessed

– Inode of files in a common directory are not kept
together so it case low performance

– Original file system uses 512 bytes block , an
inefficient transfer size

46Unix Shell Programming - Forouzan

Types of files

• The Unix OS is built the concept of file system

• It is used to store all the information including
– OS kernel itself

– Executable file command to support OS

– OS configuration information

– Temporary work file

– User data

– Control access to system hardware and system
function

47Unix Shell Programming - Forouzan

• Files can be classified into four categories
– Ordinary or Regular file

– Directory file

– Device file or special file

– Hidden file

• Ordinary or Regular file
– It contain text, data or program information

– It cannot contain other file or directories detail

– Unix file name not broken into name part and an
extension part(extension used to classify file)

48Unix Shell Programming - Forouzan

• It contain any character except / .

• The character such as *,?,# and & have special
meaning in shell so you t not suppose to use in
file

• You can use _ underscore symbol

• The ordinary file has two type

• Text file
– It contain only printable character

– It contain line of character each terminate by
newline(enter) character

– Eg

– Text file include C and Java program in Shell and Perl

49Unix Shell Programming - Forouzan

• Binary Files
– It contain both printable and non printable

character (0 to 255 codes)

– Eg
• Unix command, object command of C program

– Directory file
• Directories are container or folder that hold files and

other directories

• Directories point to other directories which is known as
sub directories

• It also contain link information

• Normally a directories contain two piece of information
– File name

– A unique identification number(called inode number)

50Unix Shell Programming - Forouzan

• Device Files

– To provide application, with easy access to
harware device, unix allow the same way as
ordinary file

– The video screen of your PC, RAM, disk Drive and
other device are accessed through device file

– Two types of device files

• Block Oriented device – it transfer data into block

• Character oriented device – it transfer data on the byte
by byte basics(eg modem, printer and network)

51Unix Shell Programming - Forouzan

• Hidden files

– A file name begin with . (dot) character such file is
known as hidden file

– It is used to store specific information ie startup
information

– It is not displayed using ls command

52Unix Shell Programming - Forouzan

PATHNAME
• To reach for a particular directory or file in the file system a specific route

is required.

• The route taken to reach a file is a file system is known as path to a file

• To specify the location the path name is used

• To specify the path the source to destination must include

• It is separated by / (it act as delimiter as file and directory

• Two types of path 1) absolute 2) relative

• It can be defined by absolute path from root or relative path from current

working directories (it does not contain / as the first character)

• If we use relative path the “.”for current directory and “..” for parent

directory

53Unix Shell Programming - Forouzan

Pathname Examples

/

bin/ etc/ home/ tmp/ usr/

Hollid2/ scully/ bin/ local/

netprog unix/ X ls who

/usr/bin/ls
Syllabus

/home/hollid2/unix/Syllabus

54Unix Shell Programming - Forouzan

Relative Pathnames

Prefixed w/the current directory, $PWD
So, relative to the current working directory
$ cd /home/hollid2

$ pwd

/home/hollid2

$ ls unix/Syllabus

unix/Syllabus

$ ls X

ls: X: No such file or directory

$ ls /home/scully/X

/home/scully/X

55Unix Shell Programming - Forouzan

Home directory
• When you login to unix the current directory is your home directory

• It is created by the system when the user account is opened

• If your login name banu then automatically placed the directory

that could have pathname /home/banu

• The tilde character is the unix shorthand for your home directory

• Eg
– $echo $HOME
/home/banu
Or

56Unix Shell Programming - Forouzan

Process Management

57Unix Shell Programming - Forouzan

The Process

• As unix is a multitasking and multiuser
operating system

• It can run number of program simultaneously

• All program that are loaded into memory for
execution are known as processes

• A process can be defined as a program in
execution

• Each task in unix is represented by a process

58Unix Shell Programming - Forouzan

Process state

• The life time of the process can be divided into
number of states

• If process start the execution from one state to
another

• Five state model in OS
– New – the process is created

– Running – being executed

– Waiting – it is waiting for some event

– Ready – it is ready to process

– Terminated – after execution over come to terminite

59Unix Shell Programming - Forouzan

Unix process State

• It consist of five model with additional swapping
and zombie state
– Create
– Ready (in memory)
– Ready (swapped)
– Asleep (in memory)
– Asleep (swapped)
– Running(kernel)
– Running(user)
– Zombie(without process terminate the parent process

exit)
– Preempted(returining from kernel to user mode)

60Unix Shell Programming - Forouzan

Parent and Child Processes

• A parent generate another process in UNIX

• The process that generate or create another
process is called parent of newly generated
process called child

• Ex

$cat fruits

Sh is parent cat is child

Sh is parent cat and grep are children

61Unix Shell Programming - Forouzan

• Therefore the shell process sh is parent and
cat process child process

• If the process is running it is alive after the
process over said to dead

• Ex

– $cat fruit|grep orange fruits

62Unix Shell Programming - Forouzan

Unix Process Creation
• In unix a parent process create child processes

resulting in a tree of processes
– The original process is called parent
– The new process is called child
– The child is the copy of parent
– The parent can either wait for the child or continue

the job parallel
– in unix a process create a child process using system

call called fork()
– Fork ()return 0 in child
– Fork() return the process ID of the new child in parent

process
– If fork()system call is not successful it return -1

63Unix Shell Programming - Forouzan

• Resource sharing
– A process need certain resource such as CPU time,

memory , file, I/O device to complete the task

– When a process create child process, the child
directly obtain the resource from the OS or share
a subset of its parent resource

– If so many children means the parent process
share his resources

• Exec() family of system call is used after fork()
to start another completely

• Ps command is used to display a listing of
currently active process

64Unix Shell Programming - Forouzan

• Four principal event cause process to created

– System initialization

– Execution of process creation system call by
running a process

– A user request to create a new process

– Initiation of a batch job

– When an operation system is booted several
process are created

– ie foreground process and background process

65Unix Shell Programming - Forouzan

Data Structure of a process

• Each process in the system is represented by a
data structure called process control
block(PCB) or process descriptor in linux

• It contain some basic information about job
includes

– The process ID (unique no to identify process)

– Code (program code for execution)

– Data (data being used for execution)

– Register value (the value used in CPU register)

– PC value(address stored in program counter)
66Unix Shell Programming - Forouzan

• Eg of unix process

– Each process has unique PID

– It has parent child relationship

– The tree structure of all the process in the system
of the root with special process called init(it start
running when OS is first booted)

– It is the one for creating and initializing all process

– init create login password for children

– Each login create user shell process

67Unix Shell Programming - Forouzan

Context of a process
• The context of a process is its state or mode
• The process run in two mode

– Kernel mode
– User mode

• Kernel mode
– It is referred to as supervisor mode
– System processes such as swapping, memory

allocation, house keeping run in kernel mode

• User Mode
– The user process run
– User process such as application program, utility

program run in user mode

68Unix Shell Programming - Forouzan

Kernel versus user

Kernel mode User mode

The processor execute all instruction in
hardware

It execute only subset

If mode is set to kernel the processor can
execute either kernel or user

But it can refer only user mode

The part of critical OS operation execute
in kernel mode

The application and other software
execute in user mode

The kernel code run fast It is slow

69Unix Shell Programming - Forouzan

Type of process

• Three broad categories

– Interactive process

– Non interactive process

– Daemons

• Foreground process or interactive process

– All the user processes that are created by user
using shell and attached to the terminals are
known as interactive or foreground process

70Unix Shell Programming - Forouzan

• Non interactive process or background process

• Some process run without using terminals such process is
called Non interactive process or background process

• The background processes take their input from a files
process them without holding up the terminal and write
the output to another file

– Eg

• Sorting

• Searching in a large file system for a file

The command to run background process by ending
command line with &

Eg

$sort -0 std.sort.dat&

5423 (PID NO)
71Unix Shell Programming - Forouzan

• Some limitation

– It wont show either successful or unsuccessful

– To find out execution over by giving PID no

– The output of the file is redirected to another file

– If too many process is running background the
efficiency is less

– There is danger when u logout some process is
still running

72Unix Shell Programming - Forouzan

Daemon Process

• It is the processes that constantly running
without using an associated terminals or login
shell

• It wait to get some instruction either in system
or user and start performing the task

• It alive until process should shutdown

• The important process are swapper, init, cross,
vhand etc

73Unix Shell Programming - Forouzan

Feature of daemons

• They start running as soon as it initialized

• The lifetime of daemon is as long as system is running

• The daemon cannot kill prematurely

• Init process is one of the first program loaded after
bootstrapping

• The scheduler process is used to manage and schedule
other process

• Vhand (virtual memory handler) loaded into the
system to swap active processes between memory and
disk

74Unix Shell Programming - Forouzan

• Run away process

– When the user set a process to run in the
background by adding an & at the end of the
command and logout without closing the program
or killing the program such process is runaway
process

75Unix Shell Programming - Forouzan

Process Management

Dr.T.Logeswari

76Unix Shell Programming - Forouzan

The Process

• As Unix is a multitasking and multiuser operating system

• It can run number of program simultaneously

• When a program is loaded into memory for execution it is

known as processes

• A process can be defined as a program in execution

• Each task in unix is represented by a process

77Unix Shell Programming - Forouzan

• Every process has two important attributes

– The process ID(PID)

– Each process is uniquely identified by a unique

integer called PID that is allocated by kernel when

the process is born

– It is needed to control process

– The parent PID(PPID)

– The PID of the parent is also available as a process

attributes

78Unix Shell Programming - Forouzan

• The Shell (SH) Process

– When you login into unix system a process is immediately
set up the kernel

– This represent a unix command which may be sh(bourne
shell),Ksh(korne shell), csh(C shell)or bash(bourne again
shell

– Any command given at the command prompt is actually
the standard input to the shell process.

– This process remain active till the user log out when it is
killed by the kernel

– The shell maintain a set of variable that are available to the
user like PATH and SHELL

– The shell pathname stored in SHELL, but PID stored in a
special variable $$

79Unix Shell Programming - Forouzan

To know your PID of your shell

$echo $$

Output

291

$

The 291 is the process ID of the currently running command line

shell

80Unix Shell Programming - Forouzan

• When you start the computer it first start the kernel.

• The kernel in turn is responsible for starting the first process,

which is normally init process. This process is responsible for

all other processes

• When starting a process, init start the process as a child of its

own. For instance from init the mingetty process is started.

Which is responsible for opening a login shell

• From mingetty, the bourne shell process is started to allow

user to work in unix command line

• From that it clearly shows unix process management ; there is

parent child relationship

Parent and Child Processes

81Unix Shell Programming - Forouzan

• Ex

$cat fruits

Sh is parent cat is child

Sh is parent cat and grep are children

Sh

Cat
Grep

Sh

cat

82Unix Shell Programming - Forouzan

• Therefore the shell process sh is parent and
cat process child process

• If the process is running till it is alive .it die
after the completion of the process

83Unix Shell Programming - Forouzan

84

UNIX Process Management

• Most of OS executes within user processes

• Uses two categories of processes:

– System “processes”

• run in kernel mode for housekeeping functions
(memory allocation, process swapping...)

– User processes

• run in user mode for user programs

• run in kernel mode for system calls, traps, and
interrupts inside the user’s process image

Unix Shell Programming - Forouzan

System call

it represent the border between the user
program and the kernel

Two set of system call

one set interact with the file subsystem

another interact with the process subsystem

85Unix Shell Programming - Forouzan

A five-state process model

• Five states: New, Ready, Running, Blocked, Exit

• New : A process has been created but has not yet been
admitted to the pool of executable processes.

• Ready : Processes that are prepared to run if given an
opportunity. That is, they are not waiting on anything except
the CPU availability.

• Running: The process that is currently being executed.
(Assume single processor for simplicity.)

• Blocked : A process that cannot execute until a specified
event such as an IO completion occurs.

• Exit: A process that has been released by OS either after
normal termination or after abnormal termination (error).

86Unix Shell Programming - Forouzan

State Transition Diagram

NEW READY RUNNING

BLOCKED

EXIT
Admit

Dispatch

Time-out

Release

Event
WaitEvent

Occurs

87Unix Shell Programming - Forouzan

States of a UNIX Process
• User running: Process executes in user mode

• Kernel running: Process executes in kernel mode

• Ready to run in memory: process is waiting to be scheduled

• A sleep in memory: waiting for an event

• Ready to run swapped: ready to run but requires swapping in

• Preempted: Process is returning from kernel to user-mode but the system has

scheduled another process instead

• Created: Process is newly created and not ready to run

• Zombie: Process no longer exists, but it leaves a record for its parent process

to collect.

– See Process State Diagram!!

88Unix Shell Programming - Forouzan

89

Unix Process State Transition Diagram

Sleep = Blocked

Preempted: returning to user mode,

but kernel schedules another process

Unix Shell Programming - Forouzan

Unix Process Creation

• A parent generate another process in UNIX

• The process that generate or create another
process is called parent of newly generated
process called child

90Unix Shell Programming - Forouzan

Unix Process Creation
• In unix a parent process create child processes

resulting in a tree of processes

– The original process is called parent

– The new process is called child

– The child is the copy of parent

– The parent can either wait for the child or continue the job
parallel

91Unix Shell Programming - Forouzan

• Resource sharing

– A process need certain resource such as CPU time,

memory , file, I/O device to complete the task

– When a process create child process, the child directly

obtain the resource from the OS or share a subset of its

parent resource

92Unix Shell Programming - Forouzan

93

How To Create New Processes?

• Underlying mechanism

– A process runs fork to create a child process

– Parent and children execute concurrently

– Child process is a duplicate of the parent process
parent

child

fork()

Unix Shell Programming - Forouzan

94

n After a fork, both parent and child keep running, and each can

fork off other processes.

n A process tree results. The root of the tree is a special process

created by the OS during startup.

Process Creation

n A process can choose to wait for

children to terminate. For

example, if C issued a wait()

system call, it would block until

G finished.

Unix Shell Programming - Forouzan

• Three distinct phases in the creation of process in unix

– Forking

– Overlaying and execution

– Waiting

• These three phases executed using system call

– Fork (to create a process)

– Wait(to wait for child process to complete)

– Exec(used after fork to start another completely different

program)

– Exit(terminates the child process)

95Unix Shell Programming - Forouzan

Fork () System Call

Syntax: int pid = fork()
– In unix a process create a child process using system call called

fork()

– Fork ()return 0 in child

– Fork() return the process ID of the new child in parent process

– If fork()system call is not successful it return -1

Exec() System call

Syntax: exec*(“program”[,argvp,envp]);

- it allows the replacement of current process with a named

program

- the process created with exec() has the same PID as the child
that was just forked

96Unix Shell Programming - Forouzan

• Wait () system call

Syntax: int = wait(&status)

– The parent then execute the wait() system call to keep waiting

for the child process to complete

– When a parent exit without waiting and the child want to exit

then the child called zombie

– It remains in the system until it is waited

• Exit() system call

Syntax: exit(status);

Once the child process complete execution a call is made to

exit() system call that terminate or end the child process and

sent signal to the parent

97Unix Shell Programming - Forouzan

• Four principal event cause process to created

– System initialization

– Execution of process creation system call by running a

process

– A user request to create a new process

– Initiation of a batch job

• When an operation system is booted several process are created

• ie foreground process and background process

98Unix Shell Programming - Forouzan

99

Summary

• Fork
– Creates a duplicate of the calling process

– The result is two processes: parent and child

– Both continue executing from the same point

• Exit
– Orderly program termination

– Unblocks waiting parent

• Wait
– Used by parent

– Waits for child to finish execution

Unix Shell Programming - Forouzan

Data Structure of a process

• Each process in the system is represented by a data structure called

process control block(PCB) or process descriptor in linux

• Kernel maintain 2 data structure to describe the process

– PCB (it contain field always accessible by kernel)

– U – area(it can accessible only to the running process)

• It contain some basic information about PCB

– The process ID (unique no to identify process)

– Code (program code for execution)

– Data (data being used for execution)

– Register value (the value used in CPU register)

– PC value(address stored in program counter)

100Unix Shell Programming - Forouzan

• User Area

– Each process has only one user table

– It contain some information that must be accessible

while process is in execution

• A pointer to the process table slot

• Parameter of the current system call, return value error

codes

• File descriptor for all open files

• Current directory and current root

• Process and file size limit

– User table is an extension of the process table

101Unix Shell Programming - Forouzan

• Eg of unix process

– Each process has unique PID

– It has parent child relationship

– The tree structure of all the process in the system of the

root with special process called init(it start running when

OS is first booted)

– It is the one for creating and initializing all process

– init create login password for children

– Each login create user shell process

102Unix Shell Programming - Forouzan

Context of a Process

• A context switch (also referred to as process switch or a task switch)

is the switching of the CPU from the one process to another.

• Context switching is an essential feature of multitasking operating

system

• The different context of a process are

– User Context (consist of process text, data, user stack and

shared memory that occupy the virtual address space of the

process

103Unix Shell Programming - Forouzan

• Kernel Context (maintained and accessible only to kernel. It

has information that the kernel needs to keep track of the

process and to stop and restart the process while other

processes are allowed to execute

• When context of switching take place the kernel perform the

following activities ie CPU has to switch from the process A to

Process B

104Unix Shell Programming - Forouzan

Kernel versus user

Kernel mode User mode

The processor execute all instruction in
hardware

It execute only subset

If mode is set to kernel the processor can
execute either kernel or user

But it can refer only user mode

The part of critical OS operation execute
in kernel mode

The application and other software
execute in user mode

The kernel code run fast It is slow

Example: I/O Instruction Application program

105Unix Shell Programming - Forouzan

Type of process
• Three broad categories

– Interactive process

– Non interactive process

– Automatic or batch process

– Daemons

• Foreground process or interactive process

– All the user processes that are created by user
using shell and attached to the terminals are
known as interactive or foreground process

106Unix Shell Programming - Forouzan

• Non interactive process or background process

• Some process run without using terminals such process is
called Non interactive process or background process

• The background processes take their input from a files
process them without holding up the terminal and write
the output to another file

– Eg

• Sorting

• Searching in a large file system for a file

– The command to run background process by
ending command line with &

Eg

$sort -0 std.sort.dat&

5423 (PID NO)
107Unix Shell Programming - Forouzan

• Some limitation

– It wont show either successful or unsuccessful

– To find out execution over by giving PID no

– The output of the file is redirected to another file

– If too many process is running background the
efficiency is less

– There is danger when u logout some process is
still running

108Unix Shell Programming - Forouzan

• Automatic or batch process

– It is not connected to a terminal

– Rather these task can be queued into spooler area (FIFO)basics

• Daemon process

– It is the Server processes that constantly running without using an

associated terminals or login shell

– It wait to get some instruction either in system or user and start

performing the task

– It alive until process should shutdown

– The important process are scheduler process, init, vhand (virtual memory

handler) etc

109Unix Shell Programming - Forouzan

Feature of daemons

• They start running as soon as it initialized

• The lifetime of daemon is as long as system is running

• The daemon cannot kill prematurely

• Init process is one of the first program loaded after bootstrapping

• The scheduler process is used to manage and schedule other

process

• Vhand (virtual memory handler) loaded into the system to swap

active processes between memory and disk

110Unix Shell Programming - Forouzan

• Run away process

– When the user set a process to run in the background by

adding an & at the end of the command and logout

without closing the program or killing the program such

process is runaway process

111Unix Shell Programming - Forouzan

Process Related Commands

• Ps Command

• Syntax: ps [-option][user]

– Ps command is used to display the attribute of the
process

– It display PID, TTY, TIME and CMD(name of the
process

• $ps

• $ps-f

• $ps-a

112Unix Shell Programming - Forouzan

• Nohup: Log out safely

– When working with unix OS there will be a time to run the

command even after the user log out or unplanned login session

terminate

– If you issue the command at command prompt the shell create

a child prompt for the command you have issued

• Example

$nohup sort –o empsort.lst emp.lst &

Ouput

567

Sending output to empsort.lst

113Unix Shell Programming - Forouzan

• Top command

– It provides an ongoing look at processor activity in

real time

– It shows how much processing power and memory

are being used as well as other information about the

running processes

– It is useful for system administrator

$top

Output

PID, Username, PRI,Size,Res,State,Time,CPU, MEM

114Unix Shell Programming - Forouzan

• Nice command

– The nice command is used to run a command at priority lower than

the command normal priority

• Syntax: nice[-increment]command

– If you do not specify an increment value the command default to an

increment of 10

– You must have root user authority to run a command at a higher

priority

– The priority of the process is called nice value

$nice wc-|manual

output

– It run with lower priority. The increment value is not specified. so it

reduce the wc command by 10 unit
115Unix Shell Programming - Forouzan

• Time command

Syntax: time[option]command[arguments..]

• The time command run the specified program command with the given

argument

• When command finishes, time write a message to standard output giving

timing statistics about program run

• It accept the entire command line as argument and time it

– Real time(the elapsed time between innovation and termination)

– User time(to execute itself)

– System time(kernel to execute the user process)

• $time ./script1.sh

116Unix Shell Programming - Forouzan

Process Termination

• When the terminal hangs

• When the user log off

• When a program execution has gone into an endless loop

• The process has exceeded its time limit

• Memory is unavailable

• An I/O failure

• Interrupt by the operating system

117Unix Shell Programming - Forouzan

The process is terminated the following action takes place:

• All the file opened by the terminated process are closed

• Exit status of the terminal process is saved

• If the process had any child processes, the kernel makes init

process as the parent of all live child processes

• Process state is changed to zombie

• Release memory resource utilized by the process

118Unix Shell Programming - Forouzan

UNIX Signals

• Signals are a UNIX mechanism for controlling

processes

• A signal is a message to a process that requires

immediate attention

• Signals are generated by exceptions, e.g.:

– Attempts to use illegal instructions

– The user pressing an interrupt key

– Window resize events

– A child process calling exit or terminating abnormally

119Unix Shell Programming - Forouzan

Signal Numbers

• Each signal has a default action
associated with it

• Most signals can be caught from within a
program. A programmer can then:

– Ignore signal

– Perform the default action

– Execute a program specified function

• The default action can be

– Term Terminate the process.

– Ign Ignore the signal.

– Core Terminate the process and dump core.

– Stop Stop the process.
120Unix Shell Programming - Forouzan

Signal Numbers

Signal

Name

Number Default

Action

Meaning

SIGHUP 1 Term Hangup (sent to a process when a modem or

network connection is lost, terminal is closed,

etc)

SIGINT 2 Term Interrupt (generated by Ctrl-C)

SIGTRAP 5 Core Trace trap

SIGKILL 9 Term Kill

SIGBUS 10 Core Bus error (invalid memory reference)

SIGSEGV 11 Core Segmentation violation

SIGTERM 15 Term Software termination signal (default kill signal)

For a complete reference see the section 7 of the manual on signal

$ man 7 signal
121Unix Shell Programming - Forouzan

kill and killall

• In order to communicate with an executing process from the shell,

you must send a signal to that process.

• The kill command sends a signal to the process.

• You can direct the signal to a particular process by using its pid

• The kill command has the following format:

kill [options] pid

– -l lists all the signals you can send

– -p (on some systems prints process information)

– -signal is a signal number

122Unix Shell Programming - Forouzan

Unix Shell Programming - Forouzan

• To terminate a process you can send the HUB signal, which is
signal number 9.

• Example: kill -9 24607 will force the process with pid 24607
to terminate.

• On LINUX you have the option to use killall to kill all processes
that are running and are owned by you.

USE THE KILL-COMMAND TO TERMINATE ANY UNWANTED BACKGROUND
PROCESSES !!!

123

Scheduling Processes - at

• You can schedule something to happen once

using at

• at TIME will execute at given TIME the commands

given in Standard input.

• It’s often more comfortable to use

at TIME < filename

at TIME –f filename

124Unix Shell Programming - Forouzan

Scheduling Processes - at (2)

$ at now + 1 min
$ at> who | logged
$ at> ls myDir | listing.txt
$ at> <EOT>
job 1171280502.a at Mon Feb 12 11:41:42 2007
$ at 3am < commands
job 8 at 2007-03-21 03:00

125Unix Shell Programming - Forouzan

Scheduling Processes - batch

• The batch command can be used to
queue up jobs:

• These jobs will be run as soon as the
system has the resources to do so

$ batch
at> ls myDir > listing.txt
at> <EOT>
$

126Unix Shell Programming - Forouzan

Scheduling Processes - cron

• Processes can be scheduled to run at a

periodic intervals:

– Use the cron daemon

– With this, users can schedule processes to

run periodically, or at specified times

– Create a text file called crontab.cron which

contains lines with a date/time and

command line

127Unix Shell Programming - Forouzan

Scheduling Processes - cron (2)

– Cron jobs are allowed or denied by system

administrators using the cron.allow and

cron.deny files in either /var/spool/cron or

/etc/crond.d

– You have to register your crontab using the

command crontab crontab.cron in order for

the cron daemon to activate your crontab

128Unix Shell Programming - Forouzan

Scheduling Processes - cron (3)

• Each line in crontab.cron has five fields:

– Minute - (0-59)

– Hour - (0-23)

– Day of the month - (1-31)

– Month of the year - (1-12)

– Day of the week - (0-6) (Sunday is 0)

– Command line - the command to be executed

129Unix Shell Programming - Forouzan

Using cron

• Edit your crontab.cron file to
contain what you want it to do:

– This cron job will record the date it
was run every 30 minutes from
Monday to Friday, in the file datelog

• Register your crontab:

$ crontab crontab.cron

0,30 * * * 1-5 date >> datelog

130Unix Shell Programming - Forouzan

