
SOFTWARE PROTOTYPING

Prototyping

• Its an early sample, model of the product built to test a process to act
as a thing to be learned from.

Introduction

• what is software prototyping ?

It is the process of implementing the presumed software requirements
with an intention to learn more about the actual requirements or alternative
design that satisfies the actual set of requirements .

• Need for software prototyping

-To assess the set of requirements that makes a product

successful in the market

-To test the feasibility without building the whole system.

-To make end-user involved in the design phase

Benefits of Software Prototyping

• It makes the developers clear about the missing requirements. Lets
the developers know what actually the users want.

• Reduces the loss by bringing the manufacturer to a conclusion
weather the system which we are about to build is feasible or not
rather than building the whole system and finding it .

• One can have a working system in before hand.

• It brings the user to get involved in the system design

Types of Prototyping

Types of Prototyping

• Throw away prototyping

• Evolutionary prototyping

.

• Operational prototyping

Throw away prototyping

• Objective - Derive end system requirements

• Throw away prototyping is one type of approach where an initial prototype is
built mainly focusing on the poorly understood requirements

• Once the requirements are understood requirements document is updated and
a conventional development process is followed to build system

Throw-away prototyping

• Used to reduce requirements risk

• The prototype is developed from an initial specification, delivered for
experiment then discarded

• The throw-away prototype should NOT be considered as a final system
• Some system characteristics may have been left out

• There is no specification for long-term maintenance

• The system will be poorly structured and difficult to maintain

Evolutionary Prototyping

• Objective – Deliver a working system + requirements

• Evolutionary prototyping is the one in which a system is build using the well
understood requirements.

Evolutionary prototyping

• Specification, design and implementation are inter-twined

• The system is developed as a series of increments that are delivered
to the customer

• Techniques for rapid system development are used such as CASE
tools and 4GLs

• User interfaces are usually developed using a GUI development
toolkit

Evolutionary Prototyping

• Advantages –

Quickly Delivered

Makes User Commit

Look like feel

• Disadvantages –

Availability of specialist skills

Maintenance over long term

Operational Prototyping

• Used when requirements are either critical and understood or not
critical and poorly understood .

• Throw away prototypes are selectively built on top of evolutionary
prototype

• A trained prototyper keeps track of user .

Throw-away prototyping

Outline

requirements

Develop

prototype

Evaluate

prototype

Specify

system

Develop
software

Validate
system

Delivered
software
system

Reusable
components

Outline the requirements all should be mentioned

The Design according to the Requirements and develop the
prototype

Evaluate means user experiences and then specify the new
requirements.

REPEAT the above step if necessary

Then using system specification and developed prototype,
develop the software

Then validate the system and check whether any error is
coming or not. If yes then again develop the software.

Advantage

• Used to check the design of the system

• Can be developed very quickly

• Used for hardware system which helps in cost reduction.

Disadvantage

• This prototype fails to reflect the FUNCTION of the system

• Fails to clarify interface and the relationship

• The training time during prototype evaluation may not be enough

• Important features may be left out of the prototype.

Evolutionary Prototyping

Objective – Deliver a working system +
requirements

• Giving the user a system which is INCOMPLETE and then modifying
and augmenting it as the user requirements becomes CLEAR

• This start with the limited understanding of the system requirements
and changed as NEW REQUIREMENTS are discovered

• Develop as abstraction

• Build the system

• By using prototype system

• And a system adequate gives the delivered system

• Or rebuilt again the prototype system

Advantages

• Rapid delivery of the system and deployment are sometime more
important than long them maintainability

• System should not only meet the requirements of the system, but also
commit to use the system.

Disadvantages:
Management problems---- Specialist skills not available

Maintenances problems---- continuous changes may corrupt the sys structure

So long term maintenances is expensive

PROTOTYPING TECHNIQUES

• Development techniques used to develop prototype RAPIDLY are
called RAPID PROTOTYPING techniques.

• It concentrates only on speed of delivery

• It does not rely on other characteristics such as performance,
maintenance or reliability

Three Rapid Development techniques used
are:

1) Dynamic high level language development

2) Data base programming

3) Component and application assembly

Dynamic high level language development

• Dynamic HLL are programming language that simplify program
development since they reduce problems of storage allocation and
management

Language type Application domain

Small talk Object oriented Interactive system

Java Object oriented Interactive system

Prolog Logic Symbolic processing

Characteristics of DHLL

• They are languages which include powerful data management

• They need a large run time support system, normally not used for
large system development

• Some languages have IDE (integrated development) whose facilities
may be used in the prototype

• CHOICE OF PROTOTYPE LANGUAGE:

DHLL can be selected for prototyping based on:-

1) Application domain

2) Type of user interface

3) Environment support

DATABASE PROGRAMMING

• It creates data and maintains the records in a specified fashion

• It manipulates the data from database and produce outputs in
organized and formatted fashion

• The database programming language along with the environment is
known as FOURTH-GENERATION language (4GL)

1) standard forms for input and output

2) Abstract information's from a database and present it to end user
on their screen

3) Update the database with changes made by the user

4) User interface containing a set of standard forms or a spread sheet

Tools and Techniques

• Low level tools

• High Level languages

• Fourth Generation Languages (4GL)

• Visual programming .

Troubles of Software Prototyping

• Developers may loose the focus on real purpose of prototype and
comprise with the quality of system .

• New born ideas will be plundered at the initial stages

• Prototyping will not reveal the non functional requirements like
robustness, safety etc .

CHAPTER 5
SOFTWARE DESIGN

• What is software Design ?

Software Design is what virtually every engineer wants to do, it’s the
place where creativity rules, Customer requirements, Business needs
and Technical considerations come together in the development of a
system.

It’s the bridge between requirements specification and the final
solution for satisfying the requirements

Why software Design

• It produce various models that form a kind of blueprint of the
solution to be implemented.

• Design allows a s/w engineer to model the system that is to be
developed.

• These models can be used for improving the quality of the system
before code is generated and tests are conducted.

• We can analyse and evaluate these models to determine whether or
not they will allow us to fulfil the various requirements.

Design Process: is a sequence of steps that enable the
designer to describe all aspects of the software to be
built.

1) Deciding which model/module are needed for the system.

2) Internal Design of the model is decided upon. This is called detailed
design or Logic Design

Design Process for s/w system (2 levels) are

Design Model : its like architect’s plan for a house. The design
model represents the completeness of the things to be built.

Design Objectives:

• The goal of the design process is to find the best possible design,
within the limitation imposed by the requirements.

• Properties are:

1) Correctness

2) Verifiability

3) Completeness

4) Consistency

5) Efficiency

6) Traceability

7) Uderstandability

8) Maintainability

Design Architecture

• It refers to the overall structure of the s/w and the ways in which that
structure provides conceptual integrity for a system.

• Design Model

Procedural design

Interface Design

Architectural Design

Data Design

Data Design

Design Principals

•The design process should not suffer from tunnel
vision

•The design should be traceable to analysis model

• The design should not re-invent the components

•The design should minimize the intellectual distance

•The design should exhibit uniformity and distance

•The design should be structured to accommodate
changes

•The design should be structured to degrade gently,
even when data events or operating conditions are
encountered.

•Design is not coding , coding is not design

•The design should be assessed for quality as it is
being created not after

•The design should be reviewed to minimize
semantic errors.

DESIGN TECHNIQUES

1) Problem partitioning

2) Abstraction

3) Top – Down and Bottom – up

4) Modularity

PROBLEM PARTITIONING

• Complex problems can be divided into small sub-program.

• Each program cab be handled independently.

• It can be integrated to form a whole executable program.

• Problem partitioning is s method of adopting the principle od divide and
conquer to get the solution to the problem.

Payroll package

Module 1 Module 2 Module 3 Module 4

Sub-Module
1.1

Sub-Module
2.1

Sub-Module
3. 1

Sub-Module
4. 1

Sub-Module
1. 2

Sub-Module
2.2

Sub-Module
3.2

Sub-Module
4.2

ABSTRACTION
• Abstraction is the method of describing a program function.

• High level of abstraction states the solution to the problem

• Low level of abstraction deals with procedural details.

• DIFFERENT LEVELS OF ABSTRACTION ARE:

1) Data abstraction

2) Procedural Abstraction

3) Control Abstraction

DATA ABSTRACTION

• It refers to the collection of data describes

• Data types, objects, operations on the objects by suppressing
representation and manipulation details.

• Eg: open the door

Walk to door, reach out

Hold the knob

Turn Knob and pull door

step away from moving door etc.

• Procedural Abstraction:-

* It reflects functional Data Base.

* it’s a sequence of instructions that has specification and relates
to a particular function, internals of the object are hidden

Eg: Starting the car ------ steering, engine

------- gear, driver (all others are hidden)

• Control Abstraction: -

* It controls the program without specifying the internal details.

Eg: Apply car break.

MODULARITY
• Software is divided into components called Modules that are integrated to satisfy

problem requirements.

• Modules contains instructions, processing logic and data structures

• Modules cab be separately compiled and stored in a library and included in a
program.

• Modules can be invoked by Name and some parameters

MODULARITY HAS 5 CRITERIA ARE:-

1) Modular Decomposability --- decomposing a problem into sub-problem

2) Modular Composability---- it’s a design method, existing design to new sys

3) Modular Understandability---its understood as single unit without referring to
other modules, easier to build a module and make changes easily.

4) Modular Continuity----small change to the sys requirements result in changes

5) Modular protection ---- Error will be minimized

TOP- DOWN AND BOTTOM – UP STRATEGIES

Top-Down Design approach starts by identifying the major components of the
system.

Decomposing them into Lower-level components.

Bottom- up design approach starts with designing the most basic components
and proceeds to the highest level component.

Bottom approach can be used to improve system features and functions.

Design process is an activity of converting the system specification into
executable design
Progression from an informal to a detailed design

• The system should be described at several different levels of abstraction

• Design takes place overlapping. For that we have the general model

Informal
design outline

Informal
design

More formal
design

Finished
Design

Design process involves 6 main design
activities are:-

1) Architectural Design

system structuring

control modelling

modular decomposition

2)Abstract Specification

3) Interface Design

4)Component Design

5)Data structure Design

6)Algorithm Design

DESIGN STRATEGIES

• Large computer systems can be broadly divided into number of sun-
systems.

• Each sub-system include functional component with system state
information and shared data area structures

There are 2 most commonly used software design strategies :-

1) Functional Design

2) Object-Oriented Design

Functional Designs

• It involves decomposing the system into set of interacting functions
which share a centralised system memory.

• Its designed using Data flow diagram

• It start with high level abstraction and then slowly progress to detailed
design

• Eg: Data flow design

Structural Decomposition

Detailed Design

functional Design

process has a set of

activities

Shared memory

F1 F1 F1

F1 F1

Object Oriented Design

• Design is viewed as set of objects.

• Each object has its own attributes and operations performed on the
object.

• It is based on information hiding

• The system state is de-centralised and each object manages its own
state

Attributes

car

Domestic
sports

Colour
Model
Speed
Cost

Performance

Develop
design based
on object car

DESIGN QUALITY

• Good software design depends on the codification.

• Coding must be efficient. Adaptability, clarity, compactness and
flexibility are the important design qualities

• Design Quality is measured using 2 qualities:

1) Cohesion

2) Coupling

Cohesion :
it’s a module represent how tightly bound the internal elements of the
module are to one another.
Strong cohesion is desirable.

There are 7 levels of Cohesion

1) Coincidental Cohesion: can occur if an existing program is modularized by
chopping into pieces and making different pieces to be modules.

2) Logical association : Components which perform similar function are
grouped together and there exists some logical relationship.

Eg: in c language ----- math.h header file

Program 1 Program 2 Program 3

Math.h

3) Temporal Cohesion: Components which are activated at the same time are
grouped together

Eg: call init-terminal, call init_calculations etc

4) Procedural Cohesion: it contains elements that belongs to a common
procedural unit module performs a series of steps in specific order.

5) Communicational Cohesion: All the elements of a component operate on
the same data

Eg: print and punch record

6)Sequential Cohesion: the output form one part of a component is the input
to another part.

7) Functional Cohesion: its strongest Cohesion. Here modules contain
elements that perform exactly one function specified

8) Object Cohesion : each operation provides functionality which
allows attributes of the object to be modified.

COUPLING
• Coupling is defined as the degree to which module interacts and

communicates with another module to perform certain task.

Loosely
coupled
modules

Tightly
coupled
modules

Desirable undesirable

Types of coupling

1) Data coupling

2) Stamp coupling

3) Control coupling

4) External coupling

5) Common coupling

6) Content coupling

Design Notation and Specification

• Design representations are important in software design since they classify
the inter-relationship and the interactions of the system.

Describe the external Describe the structure of Describe the control flow

Characteristics of the of the system flow, data representation

System

Design Specification

External Design
Specification

Architectural design
specification

Detailed Design
specification

Design Notations

1) Data flow diagrams

2) Structure charts

3) HIPO diagrams (Hierarchy-input-process-output)

4) Pseudo code

5) Structured flowcharts

6) Box Diagrams

7) Structured English

8) Decision tables

9) PDL---- Program Design Language

DOMAIN SPECIFIC ARCHITECTURES

• Architectural models may be specific to some application domain and
can be reused while developing new system. These types of models
are known as Domain specification architecture .

• Types are:

1) Generic Model

2) Reference Model

Generic Model

• Are abstractions from a number of real systems. They may serve as a
reference model and can be reused directly in a design.

• Generic models are bottom-up models, means they are derived from
existing systems

Reference Model

• Are derived from study of application domain rather than existing
system

• OSI references model

Difference between Generic and Refernces

Generic References

1. Bottom up model 1. top down model

2. Derived from a study of 2. Derived from existing systems

application domain

3. Used to compare possible 3. can be reused directly in a design

architectures

