V Semester B.C.A. Examination, Nov./Dec. 2013 (2K8 Scheme) COMPUTER SCIENCE

BCA 502 : Computer Architecture

Time: 3 Hours

Max. Marks: 90/100

Instructions: 1) Answer all Sections.

2) Section **D** for **2011-12** onwards.

SECTION - A

I. Answer any ten questions. Each carries two marks.

 $(10 \times 2 = 20)$

- 1) Write the symbol, expression and truth table of NOR gate.
- 2) What is excitation table and state diagram?
- 3) What is IC? Mention the types.
- 4) What are encoder and decoder?
- 5) Convert 782.43₍₁₀₎ to binary.
- 6) Write a Gray code for the decimal number 0 to 10.
- 7) What are the different phases in instruction cycle?
- 8) What are FGI and FGO?
- 9) What is the control selection variables generated in the control unit?
- 10) Mention the different types of interrupts.
- 11) What is handshaking?
- 12) What is auxiliary memory?

SECTION - B

II. Answer any five questions. Each carries five marks.

 $(5 \times 5 = 25)$

- 13) Explain working JK flip-flop with neat diagram.
- 14) Explain 4-to-1 line Multiplexer.
- 15) Discuss the parity generator and parity checker.
- 16) Explain the different registers in basic computer.

- 17) Explain Input-Output instructions.
- 18) Explain the classification of computer instructions based on number of address.
- 19) Explain DMA controller with a block diagram.
- 20) Write a note on virtual memory.

SECTION - C

III. Answer any three questions. Each carries fifteen marks.

 $(3 \times 15 = 45)$

21) a) Simplify the following Boolean function using K-map:

 $F(w, x, y, z) = \sum (1, 2, 4, 7, 8, 10, 13)$ and $d(w, x, y, z) = \sum (0, 6, 11, 14)$.

b) Explain different binary codes.

(7+8)

- 22) Design a sequential circuit with two JK flip-flops A and B and two inputs E and x. If E = 0, the circuit remains in the same state regardless of the value of x. When E = 1 and x = 1, the circuit goes through the state transitions from 00 to 01 to 10 to 11 back to 00, and repeat. When E = 1 and x = 0, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeat.
- 23) Explain the complete control functions and micro-operation for basic computer with neat flowchart.
- 24) a) Explain the addressing modes.
 - b) Explain the data transfer instructions.

(8+7)

25) a) Write note on programmed I/O.

b) Explain the main memory.

(7+8)

SECTION – D (2011-12 Batch onwards only)

IV. Answer any one question. Each carries ten marks.

(1×10=10)

26) a) Explain the Full-Adder.

b) Explain 4-bit shift register.

(5+5)

27) a) Explain the common bus system.

b) Write a note on RISC and CISC.

(5+5)