I Semester B.C.A. Degree Examination, November/December 2013 (F+R) (Y2K8 Scheme) Computer Science BCA 104 : DIGITAL ELECTRONICS

Time : 3 Hours

Max. Marks : 60/70

Instructions: 1) Answerall Sections.

2) Section **D** is applicable to students who have taken admission from **2011-2012** and onwards.

SECTION - A

- I. Answer any ten questions. Each question carries 1 mark. (1×10=10)
 - 1) State Kirchoff's voltage law.
 - 2) What is bilateral network?
 - 3) Mention the three types of Energy Bands.
 - 4) Define the term Doping.
 - 5) Convert (F5A)₁₆ to octal.
 - 6) Find the 2's complement of -34.
 - 7) Define peak value.
 - 8) What are combinational circuits?
 - 9) Write the truth table for EX-OR gate.
 - 10) What is a flip-flop ?
 - 11) Define Racing condition.
 - 12) List the different types of shift registers.

SECTION-B

- II. Answer any five questions. Each question carries 3 marks. (3×5=15)
 - 13) State Ohms Law. Calculate the current flowing across a 3 Ω resistor with a voltage of 12 V power.
 - 14) Briefly explain about Bohr's Atomic model.
 - 15) With a neat diagram explain the operation of P-N junction diode.
 - 16) Compare TTL with CMOS.

SN - 471

- 17) State and prove De-Morgans theorems.
- 18) With diagram explain half subtractor.
- 19) Explain 4 to 1 Mux with diagram.
- 20) What is delay flip-flop ? Explain briefly.

SECTION-C

III. Answer any five questions. Each question carries 7 marks. (7×5=35)			
21)	1) State and explain Thevenin's theorem.		
22)	a)	Explain Intrinsic semiconductor.	4
	b)	Compare half-wave and full-wave rectifier.	3
23)	a)	Explain forward bias condition in a diode with characteristic diagr	
	b)	Write a note on IC families.	3
24)	Simplify the following into SOP form using K-Map and realize using gates. F (A, B, C, D) = $\sum m (0,1,3,8,12,13,14) + \sum d (9,15)$		
25)	Pro	ove NAND and NOR gates as universal gates.	7
26)	a)	Explain the working of parallel binary adder with diagram.	3
	b)	With the diagram explain decimal to BCD encoder.	4
27)	a)	Explain JK flip-flop with the logic diagram.	4
	b)	How do you eliminate racing condition ? Explain.	3
28)	Bri	efly explain the different types of shift registers.	7
SECTION - D			
IV. Answer any one of the following. Each question carries 10 marks. (10×1=10)			
29)	a)	Explain half-wave rectifier with a neat diagram.	5
	b)	Explain parity Generator and parity checker.	5
30)	a)	Explain the working of adder/subtractor with the diagram.	5
	b)	What is RS flip-flop ? Explain clocked RS flip-flop.	5