
Process synchronization

Chapter - 4



Process Synchronization

• Process

Program in execution

• Synchronization

The concurrent processes are sharing the
same resources ,they need to coordinate and
synchronize among themselves.



Race condition

• Race condition is a situation ,where several
processes access and manipulate the same
data concurrently, and the result of the
execution depends on the particular order in
which the access takes place.



The general structure of a process

do

{

entry section

critical section

exit section

remainder section

} 

While (true)



• Entry section

Each process request the permission to enter 
the critical section.

• Critical section

It is a section of code where the process may
be changing common variables, common tables
and files.

If one process is executing in its critical
section, no other process is allowed to execute
its critical section



• Exit section : This code releases the access.

• Remainder section : The remainder section 
refers to the rest of the code.



Two commonly used instructions in process 
synchronization are

`Test and set instruction

swap  instruction



Test and set instruction
• It is used to avoid the interruption.

boolean TestAndSet(int lock)
{ 
if(lock==0)
{
lock=1;
return false;

}
else

return true;
}



SWAP Instruction

• The swap() instruction is executed
automatically and it operates on the contents
of two words.

• This instruction exchanges the contents of a
register with that of a memory location.



void swap ( int register, int memory)

{

int temp;

temp = memory;

memory = register;

register = temp;

}



Semaphores

• A semaphore is an integer variable with non-
negative values which can be accessed only 
through two standard atomic functions :

wait()     and   signal()



• Wait(S)   

It decrements the semaphore value .If the 
semaphore value becomes negative, then 
process executing the wait() is blocked.

Wait(S)

{

S--;

While (s<=0);

// do nothing

}



• Signal(S)

This operation increments the value of its
semaphore S. If the value is not positive, then a
process blocked by a wait() operation is
unblocked.

Signal(S)

{

S++;

}



Types of semaphores

• Binary Semaphores

• Counting Semaphores



Binary semaphore

• It is a semaphore which can only take of 0 and 
1.

• It is also known as mutex locks (mutual 
exclusion locks).

• Binary semaphores can be used to solve the 
critical section problem.



Counting semaphores

• First the semaphore is initialized equal to the 
number of resources available.

• When the count for semaphore becomes 0, all 
the resources are in use.



Classical problems(IPC problems) of 
synchronization

• Producer-consumer problem(or bounded-
buffer problem)

• Readers-writers problem.

• Dining Philosophers problem.



Producer-consumer problem

• It is also known as bounded-buffer problem.

• The problem describes two processes, the 
producer and the consumer who share a 
common fixed size buffer.

• The producer’s job is to generate a piece of 
code ,put it into the buffer.

• The consumer’s job is to remove one piece of 
code at a time from the buffer



• The producer won’t try to add data into the 
buffer if it is full.

• The consumer won’t try to remove the data from 
the buffer if it is empty.

• The producer is to go to sleep if the buffer is full 
and the next time consumer removes an item 
from buffer ,it wakes up the producer.

• The consumer is go to sleep if the buffer is empty 
and the next time the producer puts the data into 
the buffer, it wakes up the sleeping consumer.



Producer-consumer Algorithm

Int itemcount=0;
Void producer()
{ 
While(true)
{

Item = produce_item();
If(itemcount==buffer_size)
Sleep();
Putitemintothebuffer(item);



Itemcount=itemcount+1;

If(itemcount==1)

Wakeup(consumer);

}

}



Void consumer()

{

While(true)

{

If(itemcount==0)

Sleep();

Item=removeitemfrombuffer();

Itemcount--;

If(itemcount==buffersize-1)

Wakeup(producer);

}



Dining Philosophers problem

• Five philosophers are sitting around a circular table.

• Dining table has five chop sticks and bowl of rice in the 
middle.

• Philosopher either can eat or think

• When a philosopher wants to eat, he uses two chop 
sticks.

• When philosopher wants to think, he keeps down both 
chop sticks.

• It is assumed that no philosopher can know when 
others wants to eat.



Dining Philosophers problem
Semaphore fork[5];

int i;

Void philosopher(int i)

{

do

Wait (fork[i]);

Wait(fork[(i+1)%5]);

eat();

signal(fork[i]);

signal(fork[(i+1)%5]);

think();

} while (true);

}



Readers – writers Problem

1) There is a data area shared by a number of
processes. The data area could be a file, a block of
main memory etc.

2) There are number of processes that only read the
data area and are referred to as readers. The processes
that only write to the data area are known as writers.
The conditions to be satisfied are as below.

3) Any number of readers may simultaneously read
the data.

4) Only one writer at a time may write into the data
area.

5) If a writer is writing, no reader may read it.



int readcount;
Semaphore mutex=1,wrt=1;
void reader()
{
do
{
Wait(mutex);
Readunit();
Readcount--;
If (readcount==0)
Signal(wrt);
Signal(mutex);
}
While(true);
}



Void writer()

{

do

{

Wait(wrt);

Writeunit();

Signal(wrt);

}

While(true);

}



void main()

readcount = 0;

//call procedures reader, writer

}



Monitor

• Monitor is a high level synchronization 
construct.

• A monitor is an abstract data type that 
encapsulates private data with public 
methods.



A monitor has four components

• Initialization

• Local data

• Monitor procedures

• Monitor entry queue



• Initialization

It contains the code that is used exactly once 
when the monitor is created.

• Local or shared data

It contains the private data which can be only use 
within the monitor by the local procedures.

• Monitor procedures

A process enters the monitor by involving one of 
these procedures.

• Monitor entry queue

It contains all the threads waiting to enter into 
the monitor.


