

V Semester B.C.A. Degree Examination, Nov./Dec. 2016 (CBCS - Fresh - 2016 - 17 & Onwards) BCA - 503 : COMPUTER ARCHITECTURE

Time: 3 Hours Max. Marks: 100

Instruction: Answer all Sections.

		SECTION - A	
	An	swer any ten questions. Each carries two marks.	(10×2=20)
	1)	What is Computer Architecture ?	2
	2)	State and prove DeMorgan's theorem.	2
	3)	Mention the different logic families of IC.	2
	4)	Distinguish between RAM and ROM.	2
	5)	What is Parity bit ?	2
	6)	Write the BCD code for decimal number $8745.42_{(10)}$.	2
	7)	What are the two types of control organization?	2
	8)	Define program counter.	2
	9)	Mention the major components of CPU.	2
	10)	What is PSW ?	2
	11)	What is Polling?	2
	12)	What is memory management system?	2
		SECTION - B	
١.	An	swer any five questions. Each carries five marks.	(5×5=25)
	13	Prove NAND and NOR gates as universal gates.	5
	14	Explain PIPO shift Register with a diagram.	5
	15	Discuss the Parity generator and Parity checker.	5
	16	Explain the operation of interrupt cycle with a flow chart.	5

NS - 613			
17) Explain input-output instructions.	5		
18) Explain the three types of CPU organization.	5		
 Explain the source initiated data transfer using handshaking with a block diagram and timing diagram. 	5		
20) Write a note on memory hierarchy in a computer system.	5		
SECTION - C			
III. Answer any three questions. Each carries fifteen marks. (3×15	=45)		
21) a) Define K-Map ? Simplify the following Boolean function using K-Map :	8		
$F(A, B, C, D) = \sum (0, 2, 4, 6, 10, 11, 12, 13, 14, 15)$			
b) Explain different binary codes.	7		
22) a) Define counter. With a neat diagram explain 4-bit synchronous binary counter.	8		
b) Explain octal to binary encoder with diagram.	7		
23) Explain the design of basic computer with flow chart.	15		
24) What is addressing mode? Explain the different types of addressing modes with examples.			
25) a) Explain DMA controller with a block diagram.	7		
b) Explain the working of associative memory.	8		
SECTION - D			
IV. Answer any one question. Each carries ten marks. (1×10	=10)		
26) a) Explain the working of full adder.	5		
b) Write a note on modes of data transfer.	5		
27) a) Explain the common bus system.	5		
b) Write a note on RISC and CISC.	5		