Chapter-6

Memory management

Memory management

- In a uni-programming system, the main memory is divided into two parts, one part for Operating system and the other part for the program currently running.
- In multi-programming system, the user part of the memory is subdivided among several processes.
- The task of sub division is done by the operating system and is known as memory management.

Memory management requirements

- Hardware
- Address binding
- Dynamic loading
- · Dynamic linking
- · Logical and physical address
- · overlays

Basic hardware

- CPU can only access its registers and main memory.
- The data stored in the secondary memory must be transferred into the main memory before the CPU can work with it.
- Each process can have base register and limit register.
- Base register holds the starting address of the process and limit register holds the size of the process

Address binding

- Address binding of instructions and data to memory addresses can happen at three different stages
 - Compile time: If location of the process in the memory is known at compile time, absolute code can be generated;
 - Load time: If location of the process in the memory is not known at compile time, relocatable code can be generated;
 - **Execution time**: Binding delayed until run

Dynamic loading

- The main program is first loaded into the main memory and executed.
- Next when a routine calls another routine, the calling routine first checks to see whether that routine has been loaded.
- If not ,the relocatable loader ,loads the required routine into the memory.

Dynamic linking

 A dynamic linker is a special part of an operating system that loads external shared libraries into a running process and then binds those shared libraries dynamically to the running process.

Logical address or virtual address

An address generated by CPU is called logical address.

Physical address

An address generated by Main memory is called physical address.

Logical address space

A set of all logical addresses generated by a program is known as logical address space.

Physical address space

• Memory Management unit (MMU)

The run time mapping from a logical address to physical address is done by a hardware device called Memory management unit.

Overlays

- Overlays are used to enable a process to be larger than the amount of memory allocated to it.
- The main objective of the scheme is to keep only those instructions and data in memory, which are required at that time.
- Other instructions are loaded into the memory whenever they are required.

swapping

- Swapping is a mechanism in which a process can be moved temporarily from main memory to secondary storage (disk) and make that memory available to other processes.
- At some later time, the system swaps back the process from the secondary storage to main memory.

Contiguous memory allocation

 Contiguous memory allocation is a classical memory allocation model that assigns a process in consecutive memory blocks (that is, memory blocks having consecutive addresses).

Types of partitioning in contiguous memory allocation · Fixed partitioning

Main memory is divided into several partitions of fixed size. Each partition can accommodate only one process for execution.

Dynamic partitioning

Partitions are created dynamically so that each process is loaded into the partition of exactly the same size as that of process.

Three strategies in contiguous memory [.] First-fit allocation

First-fit allocates the first free partition which is large enough to accommodate the process.

· Best-fit

Best-fit allocates the smallest free partition that is large enough for that process.

· Worst-fit

First-fit	Best-fit	Worst-fit
Allocates first free partition which is big enough	Allocates the smallest free partition	Allocates the largest partition
Execution	Slower	Slower
fastest	execution	execution
Lesser efficient	Most efficient	Lesser efficient
utilization of	utilization of	utilization of
memory	memory	memory

Fragmentation

- Fragmentation means wastage of memory.
- Internal fragmentation

Internal fragmentation is the wasted space within each allocated block.

External fragmentation

It exists when enough to the memory space exists to satisfy a request, but it is not contiguous; storage is fragmented into a

Internal fragmentation

External fragmentation

Dynamic Partitioning

- Partitions are created dynamically so that each process is loaded into a partition of exactly the same size as that of process.
- In dynamic partition , there is no internal fragmentation.
- It Support multi-programming.
- External fragmentation is available.

Advantages of Dynamic partitioning

- · Supports multi-programming.
- Efficient usage of memory.
- Since partitions change dynamically, there is no internal fragmentation.

Disadvantages of dynamic allocation

• External fragmentation

Compaction

 Compaction is a technique of combining all the free spaces together into a large block by pushing all the process downwards as far as possible.

Compaction

Difference between fixed and		
dynamic partition		
FIXED	DYNAMIC	
Main memory is divided into a number of static partitions	Partitions are created dynamically	
Internal	External	
fragmentation	fragmentation	
Supports multi-	Supports multi-	
programming	programming	
Easy to implement	Easy to implement	