
Chapter - 5

Deadlocks

Deadlock

• Deadlock can be defined as the
permanent blocking of a set of processes
that either compete for system resources
or communicate with each other.

Deadlocks

• A process request for some resources. If
the resources are not available at that time
, the process enters a waiting state . The
resources was held by other
processes.The waiting process may never
able to get the resource.

 This situation is called deadlock.

Deadlock state

• A set of processes are said to be in
deadlock state when every process in the
set is waiting for an event that can be
caused by some another process in the
set.

System Model

• A system consists of a
finite number of
resources which must
be distributed among
several processes.

• Resources

 Physical resources
– printers , tape drives,

 hard disk.

 logical resources
- files

 Resources are of two types
• pre-emptable resource
 It is the one that can be taken away
from its current owner. (e-x) memory
• Non pre-emptable resource
 It is the one that cannot be taken away
from its current owner(e-x) printer

The utilization of the resource by a process
must be done in the following sequence.
 Request- use---- Release

• Deadlock Characterization

• Deadlock prevention

• Deadlock avoidance

• Deadlock detection

• Deadlock Recovery

Deadlock characterization

• Necessary conditions

• Resource allocation graph

• Deadlock can arise if four conditions hold
simultaneously

• Mutual exclusion: only one process at a
time can use a resource. If another
process requests the same resource, the
requesting process must wait until the
resource is released.

• Hold and wait: Processes currently
holding resources granted earlier , can
request for new resources , that are
currently held by other.

• No preemption: a resource can be
released by the process holding it only
after that process has competed its task.

• Circular wait: The circular chain of two or
more processes must exist such that each
of them is waiting for a resource held by
next member.

Circular wait

Resource allocation graph

• A set of vertices V and a set of edges E.

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all

the processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi  Rj

• assignment edge – directed edge Rj  Pi

Resource allocation graph

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Example for Resource
allocation graph

Resource allocation graph with
deadlock

Graph With A Cycle

Basic Facts

• If graph contains no cycles  no deadlock

• If graph contains a cycle 
– if only one instance per resource type, then

deadlock

– if several instances per resource type,
possibility of deadlock

Methods for Handling
Deadlocks

• Ensure that the system will never enter a
deadlock state:

– Deadlock prevention

– Deadlock avoidance

– Deadlock detection

– Deadlock Recovery

Deadlock prevention

• Mutual exclusion

• Hold and wait

• No pre-emption

• Circular wait

Mutual Exclusion

Not always possible to prevent
deadlock by preventing mutual
exclusion (making all resources
shareable) as certain resources
are cannot be shared safely.
Hold and Wait

A process can get all required
resources before it start
execution. This will avoid
deadlock, but will result in
reduced throughputs as
resources are held by
processes even when they are
not needed. They could have
been used by other processes
during this time.

Second approach is to request
for a resource only when it is
not holding any other resource.

• No preemption

We will see two approaches here. If a
process request for a resource which is held
by another process, then the resource may
be preempted from the other process. In the
second approach, if a process request for a
resource which are not readily available, all
other resources that it holds are preempted.

Circular wait

• To avoid circular wait, resources may be
ordered and we can ensure that each
process can request resources only in an
increasing order of these numbers. The
algorithm may itself increase complexity
and may also lead to poor resource
utilization.

Deadlock detection
Single Instance of Each

Resource Type• Maintain wait-for graph
– Nodes are processes

– Pi  Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that
searches for a cycle in the graph. If there
is a cycle, there exists a deadlock

Resource-Allocation Graph and
Wait-for Graph

Several Instances of a
Resource Type

The algorithm uses the following data
structures

• Available: A vector of length m indicates
the number of available resources of each
type

• Allocation: An n x m matrix defines the
number of resources of each type
currently allocated to each process

• Request: An n x m matrix indicates the
current request of each process

Deadlock detection algorithm

1.Let n = no of process and m= no of
resources

• Allocation[n][m] and request[n][m] are
matrices of nxm.

• Available[m],temp[m],done[n] are the
vectors of length m,m and n respectively.

2.Initialize temp[j]=available[j] for all j. if
allocation = 0 then done[i]=true otherwise
done[i]=false

3) Find an i such that both

 a) done[i] = false

 b) request[i][j] < = temp[j]

 if no such i exists , go to step 5.

4) temp[i] = temp[i] + allocation[i][j]for all j

 done[i] = true

 go to step 3

5) If done[i] = false, for some i,the system is
deadlocked state .

DEADLOCK AVOIDANCE

• SAFE STATE

 A state is safe if the system can allocate
resources to each process and avoid a
deadlock.

• UNSAFE STATE

 A system is in unsafe state, it may lead to
deadlock.

BANKER’S ALGORITHM

• It is a resource allocation and deadlock
avoidance algorithm developed by Dijkstra
that is applicable to resource allocation
system with multiple instances of each
resource type.

The algorithm uses the following data
structures

• Available: A vector of length m indicates
the number of available resources of each
type

• Allocation: An n x m matrix defines the
number of resources of each type
currently allocated to each process

• Need: An n x m matrix indicates the
remaining resources required by each
process.

• Max : It is an n x m matrix defines the
maximum requirements of each process.

1.Let n = no of process and m= no of
resources

• Allocation[n][m] ,need[n][m] and max[n][m]
are matrices of nxm.

• Available[m],temp[m],done[n] are the
vectors of length m,m and n respectively.

2.Initialize temp[j]=available[j] for all j.
Done[i]=false for all i.

3) Find an i such that both

 a) done[i] = false

 b) need[i][j] < = temp[j]

 if no such i exists , go to step 5.

4) temp[i] = temp[i] + allocation[i][j]for all j

 done[i] = true

 go to step 3

5) If done[i] = false, for some i,the system is
deadlocked state .

Deadlock recovery

• Process termination

• Resource pre-emption

• Check point / roll back mechanism

Process termination

• Abort all deadlocked process

• Successively abort each deadlocked
process until the deadlock no longer
exists.

Resource pre-emption

Roll back

 A process that has a resource pre-empted
from it must be roll back to the point to its
acquiring of that resource.

Total roll back – Abort the process and
restart it.

Check point

• Keep checkpointing periodically

• When a deadlock is detected , see which
resource is needed

• Take away the resource from the process
currently having it

• Restart the process from the checkpointed
state.

	Slide 1
	Deadlock
	Deadlocks
	Deadlock state
	System Model
	Slide 6
	Slide 7
	Deadlock characterization
	Slide 9
	Slide 10
	Circular wait
	Resource allocation graph
	Resource allocation graph
	Example for Resource allocation graph
	Resource allocation graph with deadlock
	Graph With A Cycle
	Basic Facts
	Methods for Handling Deadlocks
	Deadlock prevention
	Slide 20
	Slide 21
	Deadlock detection Single Instance of Each Resource Type
	Resource-Allocation Graph and Wait-for Graph
	Several Instances of a Resource Type
	Deadlock detection algorithm
	Slide 26
	DEADLOCK AVOIDANCE
	BANKER’S ALGORITHM
	Slide 29
	Slide 30
	Slide 31
	Deadlock recovery
	Process termination
	Resource pre-emption
	Check point

