
Software Requirements

•Descriptions and specifications of a
system

Requirements engineering

• The process of establishing the services that the customer requires
from a system and the constraints under which it operates and is
developed

• The requirements themselves are the descriptions of the system
services and constraints that are generated during the requirements
engineering process

What is a requirement?

• It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification

• Requirements may serve a dual function
•May be the basis for a bid for a contract - therefore

must be open to interpretation
•May be the basis for the contract itself - therefore

must be defined in detail

• Both these statements may be called requirements

What is a software requirement?

• Its an Abstract description of the system should
provide and the constraints under which the
system must operate.

• It should only specify the external behaviour of
the system.

Types of requirement

• User requirements
• Statements in natural language plus diagrams of the services the system

provides and its operational constraints. Written for customers

• System requirements
• A structured document setting out detailed descriptions of the system

services. Written as a contract between client and contractor

• Software specification
• A detailed software description which can serve as a basis for a design or

implementation. Written for developers

Requirements readers

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers (perhaps)
System architects
Software developers

User requirements

System requirements

Software design
specification

Functional and non-functional requirements

• Functional requirements
• Statements of services the system should provide,

how the system should react to particular inputs and
how the system should behave in particular
situations.

•Non-functional requirements
• constraints on the services or functions offered by the

system such as timing constraints, constraints on the
development process, standards, etc.

Functional requirements

•Describe functionality or system services

•Depend on the type of software, expected users
and the type of system where the software is
used

•Functional user requirements may be high-level
statements of what the system should do but
functional system requirements should describe
the system services in detail

Function requirement specify what the product must do in
order to specify the basic reason for its existence:

•Specifications of the products functionality.

•Actions that the product must take – check, compute,
record and retrieve.

•Derived from the basic purpose of the product.

•Normally its business oriented, rather than technical

•Not measurable or testable at this stage.

•Not a quality.

Examples of functional requirements

• The user shall be able to search either all of the initial
set of databases or select a subset from it.

• The system shall provide appropriate viewers for the
user to read documents in the document store.

• Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to copy to the
account’s permanent storage area.

Non-functional requirements (NFR)

• How a system must behave

• NFR specify all the remaining requirements not covered by the
FUNCTIONAL REQUIREMENTS.

• Define system properties and constraints e.g. reliability, response
time and storage requirements. Constraints are I/O device capability,
system representations, etc.

• Process requirements may also be specified mandating a particular
CASE system, programming language or development method

• Non-functional requirements may be more critical than functional
requirements. If these are not met, the system is useless

Examples of Non functional requirements
the user may want that the product be:

• FAST (the response time be less than a specified time)

•ACCURATE (up to three places after decimal)

•USER FRIENDLY (the input screen be self explanatory)

•ATTRACTIVE.

Non-functional classifications

 Product requirements
Requirements which specify that the delivered product must

behave in a particular way e.g. execution speed, reliability,
etc.

 Organisational requirements
Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,
implementation requirements, etc.

 External requirements
Requirements which arise from factors which are external to

the system and its development process e.g. interoperability
requirements etc.

Non-functional requirement types

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

User requirements

• Should describe functional and non-functional requirements so that
they are understandable by system users who don’t have detailed
technical knowledge

• User requirements are defined using natural language, tables and
diagrams

Problems with natural language

• Lack of clarity
• Precision is difficult without making the document difficult to read

• Requirements confusion
• Functional and non-functional requirements tend to be mixed-up

• Several different requirements may be expressed together

Database requirement

The database shall support the generation and control of

configuration objects; that is, objects which are themselves groupings

of other objects in the database.

The configuration control facilities

shall allow access to the objects in a version group by the use of an

incomplete name.

Requirements document requirements

• Specify external system behaviour

• Specify implementation constraints

• Easy to change

• Serve as reference tool for maintenance

• Record forethought about the life cycle of the system i.e. predict
changes

• Characterise responses to unexpected events

Software Requirements
Specification Document

What is an SRS ?

Software Requirements specification (SRS) is a
perfect detailed description of the behavior of the
system to be developed.

The SRS document is an formal agreement
between the developer and customer covering the
functional and non-functional requirement of the
software to be developed.

Systems Requirements Specification

Data Model

Behavioral
Model

Functional
Model

The SRS is composed of the outer layer of the behavioral model, the
functional model, then the data model.

Purpose of SRS document?

 SRS establishes basis of agreement between the user and the
supplier.
 Users needs have to be satisfied, but user may not understand

software

 Developers will develop the system, but may not know about problem
domain

 SRS is
 the medium to bridge the communications gap, and

 specifies user needs in a manner both can understand

Requirements 24

Need for SRS…

 Helps user understand his needs.
 users do not always know their needs

 must analyze and understand the potential

 The requirement process helps clarify needs

 SRS provides a reference for validation of the final
product
 Clear understanding about what is expected.

 Validation - “ SW satisfies the SRS “

Requirements 25

Need for SRS…

 Helps user understand his needs.
 users do not always know their needs

 must analyze and understand the potential

 The requirement process helps clarify needs

 SRS provides a reference for validation of the final
product
 Clear understanding about what is expected.

 Validation - “ SW satisfies the SRS “

Requirements 26

Systems Requirements Specification
The main qualities of SRS document

Correct

Complete

Unambiguous

Verifiable

Consistent

Understandable

Modifiable

Traceable

Ranked for importance and/or stability

Systems Requirements Specification
Correct -

specifies every true requirement known at that time and no incorrect

specifications - no wrong data

Unambiguous
each requirement has only one interpretation

Complete -
everything included behavior (methods, use cases, systems,
subsystems, business rules) and data (objects, attributes

Verifiable
is the software built what was specified in the SRS

Consistent
conflicting terms, characteristics, don’t conflict with other

requirement

Understandable

question: are formal specifications understandable, are informal
specifications understandable

Systems Requirements Specification

Systems Requirements Specification
Modifiable

changing requirements easily modified when specifying, designing,
coding, implementing

Traceable

the origin od each requirement can be found

Design Independent
SRS should not specify a particular design

• Ranked for importance/stability
– Needed for prioritizing in construction
– To reduce risks due to changing requirements

Components of an SRS

• What should an SRS contain ?
• Clarifying this will help ensure completeness

• An SRS must specify requirements on
• Functionality

• Performance

• Design constraints

• External interfaces

Requirements 31

Functional Requirements

•Heart of the SRS document; this forms the bulk of
the specification

• Specifies all the functionality that the system
should support

•Outputs for the given inputs and the relationship
between them

•All operations the system is to do

•Must specify behavior for invalid inputs too

Requirements 32

Performance Requirements

• All the performance constraints on the software system

• Generally on response time , throughput etc => dynamic

• Capacity requirements => static

Requirements 33

Design Constraints

• Factors in the client environment that restrict the choices

• Some such restrictions
• Standard compliance and compatibility with other systems

• Hardware Limitations

• Reliability, fault tolerance, backup req.

• Security

Requirements 34

External Interface

• All interactions of the software with people, hardware, and sw

• User interface most important

• General requirements of “friendliness” should be avoided

• These should also be verifiable

Requirements 35

Requirements document structure
1. Introduction

1.1 purpose of the requirement document

1.2 Scope of the product

1.3 definition and abbreviations

1.4 References to supporting documents

1.5 overview of rest SRS

2.General Description

2.1 Product Perspective

2.2 Product characteristics

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and Dependencies

3. Functional Requirement

4. Non-Functional Requirements

5. System Architecture

6. System Models

7. Appendices

Data dictionary

Screenshots and reports

references links

Example DFD: Enrolling in a University

Requirements 42

DFD Example

REQUIREMENTS ENGINEERING PROCESS (REP)

•The processes used for requirements
engineering vary widely depending on the
application domain, the people involved and
the organisation developing the requirements.

•The goal of this stage of the software
engineering process is to help create and
maintain a system requirements document.

REQUIREMENTS ENGINEERING PROCESS (REP)

• REP involves creating and maintaining system requirements document

• REP is divided into 4

Feasibility study

Requirement Elicitation and analysis

Requirement Specification

Requirement validation

The Requirements Engineering Process

Feasibility Studies

•A feasibility study is to access whether the
proposed system is economically and
technically feasible

•The result of a feasibility study would be a
report that recommends the feasibility of
carrying on with the requirement engineering
process.

Feasibility study

Information assessment

• Organizational

• Technical

• Economic

• Operational

Information Collection

• Asking questions to

• Managers

• Software Engineers

• Technology Experts

• End-User of the system

Report Writing

• Propose changes to

• Scope

• Budget

• Schedule

Feasibility Study Implementation

• Based on information assessment (what is required),
information collection and report writing.

•Questions for people in the organisation
• What if the system wasn’t implemented?

• What are current process problems?

• How will the proposed system help?

• What will be the integration problems?

• Is new technology needed? What skills?

• What facilities must be supported by the proposed system?

Elicitation and Analysis

• Sometimes called requirements elicitation or
requirements discovery.

• Involves technical staff working with customers to find
out about the application domain, the services that the
system should provide and the system’s operational
constraints.

•May involve end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc. These
are called stakeholders.

1.Requirement
Discovery

2.Requirement
Classification

and
organization

3.Requirements
prioritization

and Negotiation

4.Requirement
Specification

TECHNIQUES USED:

View Point oriented Elicitation (3 types of generic view point)

Interactor indirect Domain

Viewpoint of people or system Viewpoint of the Represent the

That directly interact with the stake holders who characteristics and

System donot use the sys Constraints of the

themselves but who domain which

influence the influence the

requirements sys requirement

Problems of Requirements Analysis
• Stakeholders don’t know what they really want.

• Stakeholders express requirements in their own terms.

• Different stakeholders may have conflicting requirements
• Example, staff  easy of use, management  highest security

• Patients  change appointments easily, management  plan staff resourcing,
reduce costs

• Organisational and political factors may influence the system
requirements (Data protection)

• The requirements change during the analysis process. New stakeholders
may emerge and the business environment change.

Example of Viewpoint

ATM

Hardware
maintenance

customer

Present bank
customer

Counter staff
to look into day

to day
activities

Security
Staff of bank

Bank
maintenance

customer

Software
maintenance

Customer

Bank managers
to extract

information

Representatives
From others

Interviewing

• In formal or informal interviewing, the RE team puts questions to
stakeholders about the system that they use and the system to be
developed.

• There are two types of interview
• Closed interviews where a pre-defined set of questions are answered.

• Open interviews where there is no pre-defined agenda and a range of issues
are explored with stakeholders.

• Ideally, interviewers should be open-minded, willing to listen to
stakeholders and should not have pre-conceived ideas.

Scenarios

• There are effectively test cases running in a given situation

• So for example:
• Try and withdraw cash with stolen credit card

• Try and withdraw cash but machine has low cash stock

• Withdraw cash with card number 3456123245677

• Etc.

• Scenarios are very important as they
• Show the developer by example what will happen given certain conditions

• They can be used as a basis to test the software

• Make things very clear and reduce ambiguity

Ethnography

• In ethnography, a social scientist spends a considerable amount of time
observing and analysing how people actually work.

• People do not have to explain or articulate their work.

• Social and organisational factors of importance may be observed.

• Ethnographic studies have shown that work is usually richer and more
complex than suggested by simple system models.

Focused Ethnography

• Developed in a project studying the air traffic control process

• Combines ethnography with prototyping

• Prototype development results in unanswered questions which focus
the ethnographic analysis.

• The problem with ethnography is that it studies existing practices which
may have some historical basis which is no longer relevant.

Scope of Ethnography

• Requirements that are derived from the way that people actually work
rather than the way in which process definitions suggest that they
ought to work.
• People may have “short cuts” or use their previous knowledge and experience

to better perform their role which may not be evident.

• As an example, an air traffic controller may switch off a conflict alert
alarm detecting flight intersections. Their strategy is to ensure these
planes are moved apart before problems arise and the alarms can
distract them.

Scope of Ethnography

• Requirements that are derived from cooperation and awareness of
other people’s activities.
• People do not work in isolation and may share information and use dialogue

with colleagues to inform decisions.

• Using the previous scenario, air traffic controllers may use awareness
of colleagues work to predict the number of aircraft entering their
sector and thus require some visibility of adjacent sector.

ATM machine

• Actors
• Customers

• Bank staff

• ATM service engineer

• Use cases
• Withdraw cash

• Check balance

• Add cash to machine

• Check security video recording

Example - ATM Use Case Diagram

Advanced Use Case Diagrams

• Inheritance can be used between actors to show that all use cases of
one actor are available to the other:

Bank Staff Customer

Include Relations

• If several use cases include, as part of their functionality, another use
case, we have a special way to show this in a use-case diagram with
an <<include>> relation.

Extend Relations

• If a use-case has two or more significantly different outcomes, we
can show this by extending the use case to a main use case and one
or more subsidiary cases.

SOFTWARE SYSTEM MODELING

•System models – Abstract descriptions of
systems whose requirements are being
analysed

•SYSTEM MODELS ARE GRAPHICAL
representation that describes business
processes, the problem to be solved and the
system that is to be developed.

Objectives
• To explain why the context of a system should be

modelled as part of the requirements engineering
process
• To describe behavioural modelling, data modelling

and object modelling
• To introduce some of the notations used in the

Unified Modeling Language (UML)
• To introduce formal methods and formal modeling

approaches

SYSTEM PERSPECTIVE

• Different models present the system from different perspective

• An External Perspective ------- shows the sys environment

• An Behavioral Perspective------ shows the dynamic behavior of the
sys

• An Structural Perspective------ architecture of the sys is modelled

• An Interaction Perspective------ shows the interaction between
system and its environment.

Different types of model (based on
abstraction)

1. Data flow model : shows how the data is processed
at different stage

2. Composition model : Shows how entities are
composed of other entities this is also known as
aggregation.

3. Architectural model : shows the principal sub-system
that makes sys

4. Classification model : Also known as Inheritance,
shows how entities have common characteristics

5. Stimulus – Response model : shows how the system
reacts to internal or external events.

The Unified Modeling Language Diagram
types:

• UML is a modelling language for object oriented modelling:

Use Case
Diagrams

Use Case
Diagrams

Use Case
Diagrams

Scenario
Diagrams

Scenario
Diagrams

Collaboration
Diagrams

State
Diagrams

State
Diagrams
Component
Diagrams

Component
DiagramsComponent

Diagrams
Deployment

Diagrams

State
Diagrams

State
Diagrams

Object
Diagrams

Scenario
Diagrams

Scenario
Diagrams

State
Diagrams

Use Case
Diagrams

Use Case
Diagrams
Sequence
Diagrams

State
Diagrams

State
Diagrams

Class
Diagrams

Activity
Diagrams

Models

Software modeling and models

• Software modeling helps the engineer to understand the
functionality of the system

• Models are used for communication among stakeholders

• Different models present the system from different perspectives
• External perspective showing the system’s context or environment

• Process models showing the system development process as well as
activities supported by the system

• Behavioural perspective showing the behaviour of the system

• Structural perspective showing the system or data architecture

DIFFERENT TYPES OF SYSTEM MODELS

Context model ---------------- process model

Behavioral model ---------------- dataflow model and state machine model

Data model ------------------------ data dictionaries

Object model ----------------------- Inheritance model, object aggregation
and object behavior model

CONTEXT MODEL

• Its an architectural model and helps to put boundary of the system

• If the boundary is not clear then it may pose technical and managerial
problems.

• After the boundary is defined, the dependencies of the system on its
environment can be clarified

• Ex:

BANK ATM
SYSTEM

Local branch
accounting

account
database

User
database

Hardware/software
Maintenance staff

Security
system

Cash
counter staff

Process Model

1. Ready
state

2. Running
state

3. Finish
state

5. Wait
state

4. interrupt

6. Terminate
state

BEHAVIORAL MODEL

• DATA FLOW MODEL : easy for the user to understand , Clearly represents
how data is represented.

• Symbol are:

I/O file process data storage data flows

DFD for pay roll system

Read emp
record

Read monthly
pay data

Validate emp
data

Compute
salary

Print pay slip

Monthly pay
rate

Tax tables

State machine model / Event model

• It describes how the system reacts to events. Events model represent their
behaviour.

• This model is used for modelling real time system

increase hours

mode button increase min

Display

D1: display current time

Set hours

D1: display hours

Set minutes

D1: display minutes

Behavioral models – Data Processing

Design
editor

Design
cross checker

Design
analyser

Report
generator

Design
database

Code skeleton
generator

Design
database

Input
design

Valid
design

Checked
design

Design
analysis

User
report

and

Referenced

designs

Checked

design Output

code

CASE toolset data flow diagram (DFD)

DATA MODEL

•Data models are the logical structure of the
data.

•Data model show system entities, their
attributes (properties) and the relationships
between them.

•This is called ER model its used in database
design and relational database schemas.

Data or ER models

Design

name
description
C-date
M-date

Link

name
type

Node

name
type

links

has-links

12

1 n

Label

name
text
icon

has-labelshas-labels

1

n

1

n

has-linkshas-nodes is-a

1

n

1

n
1

1

Object models

• Object models describe the system in terms of object classes

• An object class is an abstraction over a set of objects with common
attributes and the services (operations) provided by each object

• Various object models may be produced
• Inheritance models

• Aggregation models

• Interaction models

Library class hierarchy
Catalogue number
Acquisition date
Cost
Type
Status
Number of copies

Library item

Acquire ()
Catalogue ()
Dispose ()
Issue ()
Return ()

Author
Edition
Publication date
ISBN

Book

Year
Issue

Magazine

Director
Date of release
Distributor

Film

Version
Platform

Computer
program

Title
Publisher

Published item

Title
Medium

Recorded item

Object aggregation

Object interaction

:Library User

Ecat:
Catalog

Lookup

Issue

Display

:Library Item Lib1:
NetServer

Issue licence

Accept licence

Compress

Deliver

REQUIREMENT VALIDATION

Requirement Validation Techniques are:

• Requirement Reviews

• Prototyping

• Test Case Generation

• Automated Consistency Analysis (Case tools)

REQUIREMENT MANAGEMENT

• It’s the process of understanding and controlling changes to system
Requirements.

Process of Requirements Management

Requirement
Evolution

Requirement
management

planning

Requirement Evolution

Initial understanding of the problem

Initial Requirement

Changed understanding of problem

Changed requirements

