
Chapter - 9

ARRAYS

ARRAY

• An array is a structured data type
consisting of a group of elements of
the same type.

Defining an Array

An array must be declared before it is
used .It is declared by giving the type of its
elements, name and size. The syntax for
declaring an array is

 datatype array_name[size];

• Where data type declares the type of
elements to be stored in the array such as
int,float,char,double

• Array_name is the name of the array
which follows the rules of constructing an
identifier name

• Size specifies the maximum number of
elements that can be stored in the array.

Example

int x[100];

char text[80];

Float sal[10];

Important characteristics of an
Array

• All the elements of an array must be of the
same type.

• Each element of an array is referred to by
specifying the array name followed by one
or more subscipt.

• The subscript gives the position of the an
array element.

• Each subscript must be expressed as a
positive integer.

• Array elements are always stored in
sequential memory locations.

• The number of subscripts determines the
dimension of an array.

One Dimensional array

• Arrays which have elements with single
subscript are known as one dimensional
array.

 The general syntax is

 data type array_name[size];

 e-x

 int a[10];

Float b[20];

Char c[100];

/* program to find the sum,
average of n number */

#include<stdio.h>

void main()

{

int a[10],i,n,sum=0,avg;

printf(“\n Enter the number of
elements”);

scanf(“%d”,&n);

Sum=0;

for(i=1;i<=n;i++)

{

scanf(“%d”,&a[i]);

Sum=sum+a[i];

}

avg=sum/n;

printf(“%d”,sum);

printf(“%f”,avg);

}

Two dimensional array

• A two dimensional array consists of rows
and columns. Each element is accessed
by two subscripts. The first subscript
refers to the row and second subscript
refers to the column.

• The general form of declaration is

 datatype array_name[rowsize][colsize];

• Where row size and col size indicates the
maximum number of rows and columns.

• Data type may be int,float,double and char

• Array_name is the name of the array.

Example

int a[5][5];

float b[3][4];

Initializing two-dimensional
array

• int mat[3][3] = {
{10,11,12},{25,34,67},{0,6,7}};

Multi-dimensional array

• More than two dimensions are also
possible in c. The general form of a multi-
dimensional array is:

 datatype array_name [s1][s2]…[s3];

Datatype may be int,float,char,double

Array_name is the name of the array.

• Where s1,s2,s3…sn are positive integers
indicating the number of array elements
associated with each subscript.

• E-x

Int s[3][3][4];

Float tri[3][3][3];

Int table [4][4][5][2];

Chapter – 10 User defined
functions

• A function can be defined as a
subprogram which is used for doing a
specific task.

• Programs are divided into smaller
modules called functions. Each function
can be coded separately.

Categories of functions

• Library functions

 These functions are built-in functions and
ready to use. E-x mathematical functions –
sqrt,abs

• User defined functions

 These functions must be developed by
the users.

Need for writing user-defined
functions

• When same set of statements must be
repeated several times in various parts of
the program, these statements can be
placed in a function and invoked
whenever required.

• The number of lines of code will be
decreased

• Debugging becomes easier.

Structure of c functions

• The general structure of a c function is

data-type function-name(type1 arg1,type2
arg2,……….typen argn)

{

 local variable declaration;

 executable statement;

 return(expression);

 }

• Data-type may be int,float,char,double.

• Function-name represents the name of the
function.

• Argument list – List of variables and their
data types.

• Return statement is used to return the
result value to the main function.

Example for function

/* function to add two numbers */

int add(int a,int b)

{

int sum;

sum = a+b;

return(sum);

}

 /* function to find maximum of 3 integers */

int max(int a ,int b)

{

int big;

If (a>b)

Big=a;

Else

Big = b;

return(big);

}

Calling a function

• A function can be called by specifying its
name, followed by a list or arguments
enclosed in parentheses. The function call
is generally of the form

 variable=function_name(argument-list);

Return statement

• The return statement is used to send back
values from the sub program or function to
the main function. The general form of
return statement is

 return;

 or

 return(expression);

Function prototype

• In computer programming, a function
prototype is a declaration of a function
that specifies the function's name and
return type and type of the arguments.
The syntax of the function prototype is

 return-data-type function-name
(type1,type2 …..typen);

E-x for function prototypes

Addition of two numbers

int add(int , int);

Area of the circle

float area_circle(float)

Factorial of a number

int fact(int)

Actual arguments

• The arguments appearing in the function
call are known as actual arguments.

• The arguments may be constants or
variables.

In the function call

result = add(a,b)

a and b are actual arguments. The actual
arguments have some values stored in them
before function call.

Formal arguments

• The arguments that appear in the function
header is called as formal arguments.
Formal arguments get their values from
the calling function. E-x

 int fact(int n1)

 n1 is the formal argument

Difference between actual and
formal arguments

Actual arguments Formal arguments

Actual arguments may
be constants or
variables

Formal arguments must
always be variables

Actual arguments are
used in function call

Formal arguments are
used in function heading

Actual arguments are
supplied values to the
formal arguments

Formal arguments are
received values form
actual arguments

Category of functions

• Functions with no arguments and no
return value.

• Functions with arguments but no return
values.

• Functions with arguments and return
values.

• Functions with no arguments and with
return values.

• Recursive functions.

Functions with no arguments
and no return values

• The function does not contain arguments
and return values.

Main()

{

print_message();

}

print_message()

{

printf(“welcome to new horizon college”);

}

Function with argument but no
return values

The main program calls another function by
passing arguments and does not return
value from the called function.

 void main()

 {

 area_circle(r);

 }

 area_circle(r)

 {

 }

Function with Argument and
return value

• The main program calls another function
by passing arguments and returns value
to the main program.

Void main()

{

Result = Area_triangle(b,h);

}

Float Area_triangle(b,h)

{

Return(area);

}

Recursive functions

• Recursion is a process by which a function
calls itself repeatedly until some specified
condition is satisfied.

• To write a recursive function, two condition
must be satisfied.

 1. The program must be in recursive form.

 2. It must include a terminating condition.

 function1(int x)

 {

 function1(x);

 }

Factorial of a number using
recursion

#include<stdio.h>

Int fact(int); // function
prototype

 main ()

 {

 int result, n;

 printf(“ Enter any integer”);

 scanf (“ %d”, & n);

 result = fact(n);

 printf (“ The factorial of %d
is %d ”, n, result);

 }

int fact(int n)

{

If (n<=1)

 return(1);

else

 return(n*fact(n-1));

}

Fibonacci series using recursive
function

#include<stdio.h>

 int fibonacci (int);

 void main ()

 {

 int i, n;

 printf (“Enter no. of
Elements to be
generated” \n)

 scanf (“%d”, &n);

 for (i=1; i<n; i++)

 printf (“%d”, Fibonacci
(i));

 }

int fibonacci(int n)

{

If(n==0)

return(0);

If(n==1)

return(1);

else

return((fib(n-1)+fib(n-2));

}

Storage classes

Storage classes

• All the variables not only have data types
but also should have storage class

• The general syntax is

 <storage class> <data type> <variable
name>

Storage class

Auto

Static

Register

Extern

The storage class tells us

• Where the variable should be stored

• What will be the initial value

• What is the scope of the variable (in which
function the value of the variable would be
available)

• What is the life of the variable

Auto storage class

• The variables which are declared as auto
are referred to as automatic variables or
local variables.

• The automatic variables are defined at the
beginning of a function in which they are
used.

• When the function is called, the memory is
allocated to these variables and when
control comes out of the function, the
memory is deallocated.

• If the automatic variables are not initialized
, then it will be initialized to some other
values or meaningless values.

• The scope of the variable is limited only to
the function in which they are declared
and cannot be accessed outside the
function.

• E-x auto int a; auto float b;

Register storage class

• The register variables are same as
automatic variables except that variables
are stored in CPU registers than in
memory.

• The access time of the CPU register is
less than that of memory. Then the
program will run faster.

• The scope of the variables is limited only
to the function.

 e-x register int i; register float a;

Extern storage class

• The external variables are called as global
variables.

• They are declared and defined outside of
the function.

• External variables are initializes to zero
and can be accessible any where in the
program.

• The scope of the variable is throughout
the execution of the program and can be
shared by different modules of the same
program.

• E-x extern int a; extern float b;

Static storage class

• The memory allocated for static variable
will not be destroyed when the control
goes out of the function.

• If the static variables are not initialized
,then by default it contains zero.

• The value of the static variable persist
between the function calls.

• E-x static int a; static float b;

• #include<stdio.h>

• void main()

• {

• Function1();

• Function1();

• Function1();

• }

• Function1()

• {

• static int a=0;

• a=a+5;

• printf(“\n a = %d”,a);

• }

Difference between local and
global variables

Global variables Local Variables

They are normally
defined outside the main
program

Local variables are
defined inside a function

Their default initial value
is 0

Their default initial value
would be unpredictable
value

The life of global
variables is as long as
the duration of the
execution of the
program

The life of local variable
is as long as the
duration of execution of
the function within which
they are declared

	Slide 1
	ARRAY
	Defining an Array
	Slide 4
	Important characteristics of an Array
	Slide 6
	One Dimensional array
	Slide 8
	Two dimensional array
	Slide 10
	Initializing two-dimensional array
	Multi-dimensional array
	Slide 13
	Chapter – 10 User defined functions
	Categories of functions
	Need for writing user-defined functions
	Structure of c functions
	Slide 18
	Example for function
	Slide 20
	Calling a function
	Return statement
	Function prototype
	Slide 24
	Actual arguments
	Formal arguments
	Difference between actual and formal arguments
	Category of functions
	Functions with no arguments and no return values
	Slide 30
	Function with argument but no return values
	Slide 32
	Function with Argument and return value
	Slide 34
	Recursive functions
	Slide 36
	Factorial of a number using recursion
	Slide 38
	Fibonacci series using recursive function
	Slide 40
	Slide 41
	Storage classes
	Slide 43
	Auto storage class
	Slide 45
	Register storage class
	Extern storage class
	Static storage class
	Slide 49
	Difference between local and global variables

