65122

First Semester B.C.A. Degree Examination, December 2018

(CBCS – Semester Scheme)

Computer Science

Paper II – DIGITAL ELECTRONICS

Time : 3 Hours]

[Max. Marks : 70

Instructions to Candidates : Answer all the Sections.

SECTION - A

Answer any **TEN** questions. Each question carries **2** marks : (10 × **2** = **20**)

- 1. Define the following terms (a) Atomic Number (b) Orbit.
- 2. What is a Network Port?
- 3. State two advantages of Superposition Theorem.
- 4. Define the following terms :
 - (a) Leading terms
 - (b) Lagging quantity
- 5. What are the electrons in the conduction band known as?
- 6. Define Peak Inverse Voltage (PIV) of diode.
- 7. Convert the following : $(2FE1.63)_{16} =$ (10)
- 8. Define the term sum term with example.
- 9. Give the truth table and logical expression for AND gate.
- 10. What is the draw back of Half Adder Circuit?
- 11. What is sequential circuit? Give example.
- 12. Differentiate between serial and parallel shifting registers.

65122

*

SECTION – B

	Answ	ver any FIVE questions. Each question carries 10 marks : $(5 \times 10 = 5)$	50)
13.	(a)	State and explain Norton's theorem.	(5)
а 2 0	(b)	State and explain Kirchoff's voltage law.	(5)
14.	(a)	Explain the characteristic features of IC family gates.	(5)
	(b)	State and explain Bohr's atomic model.	(5)
15.	(a)	Explain briefly p-n junction with a neat diagram.	(5)
	(b)	What is rectifier? Explain the types of rectifier in detail.	(5)
16.	(a)	Simplify the following Boolean expression :	(5)
		$AB + A\overline{B} + \overline{A}C + \overline{A}\overline{C}$.	
	(b)	Define Excess 3 code? Prove that unweighted Excess 3 code is a complementing code.	self (5)
17.	(a)	State and prove Demorgan's theorem.	(5)
	(b)	Simplify using K-map :	(5)
		$F(A, B, C, D) = \Sigma(0, 1, 3, 5, 9, 12) + \Sigma d(2, 4, 6, 7).$	
18.	(a)	Explain how NOR gate can be used as universal gate.	(5)
	(b)	Explain with an example, the working of a Decoder.	(5)
19.	(a)	Explain briefly Half subtractor.	(5)
	(b)	Explain the working of JK Flipflop with logic diagram and truth table.	(5)
20.	(a)	Explain the working of PISO register.	(5)
	(b).	Write a note on Shift Register.	(5)